Nilsson Håkan, Rappaport Fabrice, Boussac Alain, Messinger Johannes
Department of Chemistry, Kemiskt Biologiskt Centrum (KBC), Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden.
Institut de Biologie Physico-Chimique, UMR 7141 CNRS and Université Pierre et Marie Curie, 13 rue Pierre et Marie Curie, 75005 Paris, France.
Nat Commun. 2014 Jul 4;5:4305. doi: 10.1038/ncomms5305.
Light-driven oxidation of water into dioxygen, catalysed by the oxygen-evolving complex (OEC) in photosystem II, is essential for life on Earth and provides the blueprint for devices for producing fuel from sunlight. Although the structure of the OEC is known at atomic level for its dark-stable state, the mechanism by which water is oxidized remains unsettled. Important mechanistic information was gained in the past two decades by mass spectrometric studies of the H2(18)O/H2(16)O substrate-water exchange in the four (semi) stable redox states of the OEC. However, until now such data were not attainable in the transient states formed immediately before the O-O bond formation. Using modified photosystem II complexes displaying up to 40-fold slower O2 production rates, we show here that in the transient S3YZ state the substrate-water exchange is dramatically slowed as compared with the earlier S states. This further constrains the possible sites for substrate-water binding in photosystem II.
光系统II中的析氧复合体(OEC)催化的水的光驱动氧化成二氧,对地球上的生命至关重要,并为利用阳光生产燃料的装置提供了蓝本。尽管OEC在其暗稳定状态下的原子结构是已知的,但水被氧化的机制仍未确定。在过去二十年中,通过对OEC的四个(半)稳定氧化还原状态下H2(18)O/H2(16)O底物 - 水交换的质谱研究获得了重要的机理信息。然而,直到现在,在O - O键形成前立即形成的瞬态状态下还无法获得此类数据。使用显示出高达40倍慢的O2产生速率的修饰光系统II复合体,我们在此表明,与早期的S状态相比,在瞬态S3YZ状态下底物 - 水交换显著减慢。这进一步限制了光系统II中底物 - 水结合的可能位点。