Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
J Am Chem Soc. 2012 Oct 10;134(40):16619-34. doi: 10.1021/ja3053267. Epub 2012 Sep 27.
Water binding to the Mn(4)O(5)Ca cluster of the oxygen-evolving complex (OEC) of Photosystem II (PSII) poised in the S(2) state was studied via H(2)(17)O- and (2)H(2)O-labeling and high-field electron paramagnetic resonance (EPR) spectroscopy. Hyperfine couplings of coordinating (17)O (I = 5/2) nuclei were detected using W-band (94 GHz) electron-electron double resonance (ELDOR) detected NMR and Davies/Mims electron-nuclear double resonance (ENDOR) techniques. Universal (15)N (I = ½) labeling was employed to clearly discriminate the (17)O hyperfine couplings that overlap with (14)N (I = 1) signals from the D1-His332 ligand of the OEC (Stich Biochemistry 2011, 50 (34), 7390-7404). Three classes of (17)O nuclei were identified: (i) one μ-oxo bridge; (ii) a terminal Mn-OH/OH(2) ligand; and (iii) Mn/Ca-H(2)O ligand(s). These assignments are based on (17)O model complex data, on comparison to the recent 1.9 Å resolution PSII crystal structure (Umena Nature 2011, 473, 55-60), on NH(3) perturbation of the (17)O signal envelope and density functional theory calculations. The relative orientation of the putative (17)O μ-oxo bridge hyperfine tensor to the (14)N((15)N) hyperfine tensor of the D1-His332 ligand suggests that the exchangeable μ-oxo bridge links the outer Mn to the Mn(3)O(3)Ca open-cuboidal unit (O4 and O5 in the Umena et al. structure). Comparison to literature data favors the Ca-linked O5 oxygen over the alternative assignment to O4. All (17)O signals were seen even after very short (≤15 s) incubations in H(2)(17)O suggesting that all exchange sites identified could represent bound substrate in the S(1) state including the μ-oxo bridge. (1)H/(2)H (I = ½, 1) ENDOR data performed at Q- (34 GHz) and W-bands complement the above findings. The relatively small (1)H/(2)H couplings observed require that all the μ-oxo bridges of the Mn(4)O(5)Ca cluster are deprotonated in the S(2) state. Together, these results further limit the possible substrate water-binding sites and modes within the OEC. This information restricts the number of possible reaction pathways for O-O bond formation, supporting an oxo/oxyl coupling mechanism in S(4).
通过 H(2)(17)O-和 (2)H(2)O 标记和高场电子顺磁共振 (EPR) 光谱研究了处于 S(2)状态的光合系统 II (PSII) 的氧释放复合物 (OEC) 的 Mn(4)O(5)Ca 簇与水的结合。使用 W 波段 (94 GHz) 电子-电子双共振 (ELDOR) 检测 NMR 和 Davies/Mims 电子-核双共振 (ENDOR) 技术检测到配位 (17)O (I = 5/2) 核的超精细偶合。普遍的 (15)N (I = ½) 标记用于清楚地区分与 OEC (Stich Biochemistry 2011, 50 (34), 7390-7404) 的 D1-His332 配体中的 (14)N (I = 1) 信号重叠的 (17)O 超精细偶合。鉴定出三类 (17)O 核:(i) 一个 μ-氧桥;(ii) 末端 Mn-OH/OH(2)配体;和 (iii) Mn/Ca-H(2)O 配体。这些分配基于 (17)O 模型配合物数据,与最近的 1.9 Å 分辨率 PSII 晶体结构 (Umena Nature 2011, 473, 55-60) 进行比较,NH(3)对 (17)O 信号包络的干扰和密度泛函理论计算。假定的 (17)O μ-氧桥超精细张量相对于 D1-His332 配体的 (14)N((15)N) 超精细张量的相对取向表明,可交换的 μ-氧桥将外部 Mn 与 Mn(3)O(3)Ca 开立方单元 (Umena 等人结构中的 O4 和 O5) 连接起来。与文献数据的比较有利于将 Ca 连接的 O5 氧而不是替代分配给 O4。即使在 H(2)(17)O 中的孵育时间非常短(≤15 s),也可以看到所有 (17)O 信号,这表明在 S(1)状态下,包括 μ-氧桥在内的所有鉴定出的交换位点都可以代表结合的底物。在 Q- (34 GHz) 和 W-波段进行的 (1)H/(2)H (I = ½, 1) ENDOR 数据补充了上述发现。观察到的相对较小的 (1)H/(2)H 偶合要求 Mn(4)O(5)Ca 簇的所有 μ-氧桥在 S(2)状态下都去质子化。这些结果共同进一步限制了 OEC 内可能的底物水结合位点和模式。该信息限制了 O-O 键形成的可能反应途径,支持 S(4)中的氧/氧基偶联机制。