Kusunoki Masami
Department of Physics, School of Science and Technology, Meiji University, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
Biochim Biophys Acta. 2007 Jun;1767(6):484-92. doi: 10.1016/j.bbabio.2007.03.012. Epub 2007 Apr 4.
The molecular mechanism of the water oxidation reaction in photosystem II (PSII) of green plants remains a great mystery in life science. This reaction is known to take place in the oxygen evolving complex (OEC) incorporating four manganese, one calcium and one chloride cofactors, that is light-driven to cycle four intermediates, designated S(0) through S(4), to produce four protons, five electrons and lastly one molecular oxygen, for indispensable resources in biosphere. Recent advancements of X-ray crystallography models established the existence of a catalytic Mn(4)Ca cluster ligated by seven protein amino acids, but its functional structure is not yet resolved. The (18)O exchange rates of two substrate water molecules were recently measured for four S(i)-state samples (i=0-3) leading to (34)O(2) and (36)O(2) formations, revealing asymmetric substrate binding sites significantly depending on the S(i)-state. In this paper, we present a chemically complete model for the Mn(4)Ca cluster and its surrounding enzyme field, which we found out from some possible models by using the hybrid density functional theoretic geometry optimization method to confirm good agreements with the 3.0 A resolution PSII model [B. Loll, J. Kern, W. Saenger, A. Zouni , J. Biesiadka, Nature 438 (2005) 1040-1044] and the S-state dependence of (18)O exchange rates [W. Hillier and T. Wydrzynski, Phys. Chem. Chem. Phys. 6 (2004) 4882-4889]. Furthermore, we have verified that two substrate water molecules are bound to asymmetric cis-positions on the terminal Mn ion being triply bridged (mu-oxo, mu-carboxylato, and a hydrogen bond) to the Mn(3)CaO(3)(OH) core, by developing a generalized theory of (18)O exchange kinetics in OEC to obtain an experimental evidence for the cross exchange pathway from the slow to the fast exchange process. Some important experimental data will be discussed in terms of this model and its possible tautomers, to suggest that a cofactor, Cl(-) ion, may be bound to CP43-Arg357 nearby Ca(2+) ion and that D1-His337 may be used to trap a released proton only in the S(2)-state.
绿色植物光系统II(PSII)中水分子氧化反应的分子机制仍是生命科学领域的一大谜团。已知该反应发生在包含四个锰、一个钙和一个氯辅助因子的放氧复合体(OEC)中,该复合体受光驱动使四个中间体(命名为S(0)至S(4))循环,以产生四个质子、五个电子,最终生成一个分子氧,这些都是生物圈中不可或缺的资源。X射线晶体学模型的最新进展证实了由七个蛋白质氨基酸连接的催化性Mn(4)Ca簇群的存在,但其功能结构尚未解析。最近测量了四个S(i)态样品(i = 0 - 3)中两个底物水分子的(18)O交换率,结果导致了(34)O(2)和(36)O(2)的形成,揭示了不对称的底物结合位点显著依赖于S(i)态。在本文中,我们提出了一个关于Mn(4)Ca簇群及其周围酶场的化学完整模型,该模型是我们通过使用混合密度泛函理论几何优化方法从一些可能的模型中筛选出来的,以确认与3.0埃分辨率的PSII模型[B. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka,《自然》438 (2005) 1040 - 1044]以及(18)O交换率的S态依赖性[W. Hillier和T. Wydrzynski,《物理化学化学物理》6 (2004) 4882 - 4889]有良好的一致性。此外,我们通过建立OEC中(18)O交换动力学的广义理论,验证了两个底物水分子与末端锰离子上的不对称顺式位置结合,该末端锰离子通过三重桥连(μ-氧代、μ-羧基和一个氢键)与Mn(3)CaO(3)(OH)核心相连,从而获得了从慢交换过程到快交换过程的交叉交换途径的实验证据。将根据该模型及其可能的互变异构体讨论一些重要的实验数据,以表明一个辅助因子Cl(-)离子可能与Ca(2+)离子附近的CP43-Arg357结合,并且D1-His337可能仅在S(2)态用于捕获释放的质子。