Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, UK.
Biol Rev Camb Philos Soc. 2011 May;86(2):493-510. doi: 10.1111/j.1469-185X.2010.00157.x. Epub 2010 Oct 24.
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful analytical techniques available to biology. This review is an introduction to the potential of this method and is aimed at readers who have little or no experience in acquiring or analyzing NMR spectra. We focus on spectroscopic applications of the magnetic resonance effect, rather than imaging ones, and explain how various aspects of the NMR phenomenon make it a versatile tool with which to address a number of biological problems. Using detailed examples, we discuss the use of (1) H NMR spectroscopy in mixture analysis and metabolomics, the use of (13) C NMR spectroscopy in tracking isotopomers and determining the flux through metabolic pathways ('fluxomics') and the use of (31) P NMR spectroscopy in monitoring ATP generation and intracellular pH homeotasis in vivo. Further examples demonstrate how NMR spectroscopy can be used to probe the physical environment of a cell by measuring diffusion and the tumbling rates of individual metabolites and how it can determine macromolecular structures by measuring the bonds and distances which separate individual atoms. We finish by outlining some of the key challenges which remain in NMR spectroscopy and we highlight how recent advances-such as increased magnet field strengths, cryogenic cooling, microprobes and hyperpolarisation-are opening new avenues for today's biological NMR spectroscopists.
核磁共振(NMR)光谱学是生物学中最强大的分析技术之一。这篇综述是对该方法潜力的介绍,面向的是那些在获取或分析 NMR 光谱方面几乎没有或没有经验的读者。我们专注于磁共振效应的光谱应用,而不是成像应用,并解释了 NMR 现象的各个方面如何使其成为解决许多生物学问题的多功能工具。我们使用详细的例子讨论了 (1) H NMR 光谱在混合物分析和代谢组学中的应用、(13) C NMR 光谱在追踪同位素异构体和确定代谢途径中的通量(“通量组学”)中的应用以及 (31) P NMR 光谱在监测 ATP 生成和细胞内 pH 稳态中的应用。进一步的例子表明,NMR 光谱学如何通过测量单个代谢物的扩散和翻滚速率来探测细胞的物理环境,以及如何通过测量分离单个原子的键和距离来确定大分子结构。最后,我们概述了 NMR 光谱学中仍然存在的一些关键挑战,并强调了最近的进展,如增加磁场强度、低温冷却、微探针和超极化,如何为当今的生物 NMR 光谱学家开辟新的途径。