Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
J Am Coll Cardiol. 2010 Dec 7;56(24):2021-30. doi: 10.1016/j.jacc.2010.08.612. Epub 2010 Oct 21.
we tested the hypothesis that bi-directional, gene-targeted regulation of cardiomyocyte cyclic guanosine monophosphate-selective phosphodiesterase type 5 (PDE5) influences maladaptive remodeling in hearts subjected to sustained pressure overload.
PDE5 expression is up-regulated in human hypertrophied and failing hearts, and its inhibition (e.g., by sildenafil) stimulates protein kinase G activity, suppressing and reversing maladaptive hypertrophy, fibrosis, and contractile dysfunction. Sildenafil is currently being clinically tested for the treatment of heart failure. However, researchers of new studies have questioned the role of myocyte PDE5 and protein kinase G (PKG) to this process, proposing alternative targets and mechanisms.
mice with doxycycline-controllable myocyte-specific PDE5 gene expression were generated (medium transgenic [TG] and high TG expression lines) and subjected to sustained pressure overload.
Rest myocyte and heart function, histology, and molecular profiling were normal in both TG lines versus controls at 2 months of age. However, upon exposure to pressure overload (aortic banding), TG hearts developed more eccentric remodeling, maladaptive molecular signaling, depressed function, and amplified fibrosis with up-regulation of tissue growth factor signaling pathways. PKG activation was inhibited in TG myocytes versus controls. After establishing a severe cardiomyopathic state, high-TG mice received doxycycline to suppress PDE5 expression/activity only in myocytes. This in turn enhanced PKG activity and reversed all previously amplified maladaptive responses, despite sustained pressure overload. Sildenafil was also effective in this regard.
these data strongly support a primary role of myocyte PDE5 regulation to myocardial pathobiology and PDE5 targeting therapy in vivo and reveal a novel mechanism of myocyte-orchestrated extracellular matrix remodeling via PDE5/cyclic guanosine monophosphate-PKG regulatory pathways.
我们检验了一个假设,即心肌细胞环鸟苷单磷酸选择性磷酸二酯酶 5(PDE5)的双向基因靶向调控会影响持续性压力超负荷下心脏的适应性重构。
在人类肥大和衰竭的心脏中,PDE5 的表达上调,其抑制(例如,通过西地那非)刺激蛋白激酶 G 活性,抑制并逆转适应性肥大、纤维化和收缩功能障碍。西地那非目前正在进行心力衰竭的临床治疗测试。然而,新研究的研究人员对心肌细胞 PDE5 和蛋白激酶 G(PKG)在这一过程中的作用提出了质疑,提出了替代的靶点和机制。
生成了具有可诱导的心肌细胞特异性 PDE5 基因表达的(中转基因[TG]和高 TG 表达系)和持续性压力超负荷的小鼠。
在 2 个月大时,与对照组相比,两种 TG 系的静息心肌和心脏功能、组织学和分子特征均正常。然而,在暴露于压力超负荷(主动脉缩窄)时,TG 心脏表现出更偏心的重构、适应性分子信号转导受损、功能下降和纤维化增强,同时组织生长因子信号通路被上调。与对照组相比,TG 心肌细胞中的 PKG 激活受到抑制。在建立严重的心肌病状态后,高 TG 小鼠仅在用多西环素抑制心肌细胞中的 PDE5 表达/活性。这反过来又增强了 PKG 活性,逆转了所有先前放大的适应性反应,尽管持续存在压力超负荷。西地那非在这方面也有效。
这些数据强烈支持心肌细胞 PDE5 调节在心肌病理生理学中的主要作用,以及 PDE5 靶向治疗在体内的作用,并揭示了一种通过 PDE5/环鸟苷单磷酸-PKG 调节途径的心肌细胞协调细胞外基质重构的新机制。