Suppr超能文献

心肌重构受心肌细胞靶向的磷酸二酯酶 5 基因调控。

Myocardial remodeling is controlled by myocyte-targeted gene regulation of phosphodiesterase type 5.

机构信息

Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

J Am Coll Cardiol. 2010 Dec 7;56(24):2021-30. doi: 10.1016/j.jacc.2010.08.612. Epub 2010 Oct 21.

Abstract

OBJECTIVES

we tested the hypothesis that bi-directional, gene-targeted regulation of cardiomyocyte cyclic guanosine monophosphate-selective phosphodiesterase type 5 (PDE5) influences maladaptive remodeling in hearts subjected to sustained pressure overload.

BACKGROUND

PDE5 expression is up-regulated in human hypertrophied and failing hearts, and its inhibition (e.g., by sildenafil) stimulates protein kinase G activity, suppressing and reversing maladaptive hypertrophy, fibrosis, and contractile dysfunction. Sildenafil is currently being clinically tested for the treatment of heart failure. However, researchers of new studies have questioned the role of myocyte PDE5 and protein kinase G (PKG) to this process, proposing alternative targets and mechanisms.

METHODS

mice with doxycycline-controllable myocyte-specific PDE5 gene expression were generated (medium transgenic [TG] and high TG expression lines) and subjected to sustained pressure overload.

RESULTS

Rest myocyte and heart function, histology, and molecular profiling were normal in both TG lines versus controls at 2 months of age. However, upon exposure to pressure overload (aortic banding), TG hearts developed more eccentric remodeling, maladaptive molecular signaling, depressed function, and amplified fibrosis with up-regulation of tissue growth factor signaling pathways. PKG activation was inhibited in TG myocytes versus controls. After establishing a severe cardiomyopathic state, high-TG mice received doxycycline to suppress PDE5 expression/activity only in myocytes. This in turn enhanced PKG activity and reversed all previously amplified maladaptive responses, despite sustained pressure overload. Sildenafil was also effective in this regard.

CONCLUSIONS

these data strongly support a primary role of myocyte PDE5 regulation to myocardial pathobiology and PDE5 targeting therapy in vivo and reveal a novel mechanism of myocyte-orchestrated extracellular matrix remodeling via PDE5/cyclic guanosine monophosphate-PKG regulatory pathways.

摘要

目的

我们检验了一个假设,即心肌细胞环鸟苷单磷酸选择性磷酸二酯酶 5(PDE5)的双向基因靶向调控会影响持续性压力超负荷下心脏的适应性重构。

背景

在人类肥大和衰竭的心脏中,PDE5 的表达上调,其抑制(例如,通过西地那非)刺激蛋白激酶 G 活性,抑制并逆转适应性肥大、纤维化和收缩功能障碍。西地那非目前正在进行心力衰竭的临床治疗测试。然而,新研究的研究人员对心肌细胞 PDE5 和蛋白激酶 G(PKG)在这一过程中的作用提出了质疑,提出了替代的靶点和机制。

方法

生成了具有可诱导的心肌细胞特异性 PDE5 基因表达的(中转基因[TG]和高 TG 表达系)和持续性压力超负荷的小鼠。

结果

在 2 个月大时,与对照组相比,两种 TG 系的静息心肌和心脏功能、组织学和分子特征均正常。然而,在暴露于压力超负荷(主动脉缩窄)时,TG 心脏表现出更偏心的重构、适应性分子信号转导受损、功能下降和纤维化增强,同时组织生长因子信号通路被上调。与对照组相比,TG 心肌细胞中的 PKG 激活受到抑制。在建立严重的心肌病状态后,高 TG 小鼠仅在用多西环素抑制心肌细胞中的 PDE5 表达/活性。这反过来又增强了 PKG 活性,逆转了所有先前放大的适应性反应,尽管持续存在压力超负荷。西地那非在这方面也有效。

结论

这些数据强烈支持心肌细胞 PDE5 调节在心肌病理生理学中的主要作用,以及 PDE5 靶向治疗在体内的作用,并揭示了一种通过 PDE5/环鸟苷单磷酸-PKG 调节途径的心肌细胞协调细胞外基质重构的新机制。

相似文献

4
Oxidative stress regulates left ventricular PDE5 expression in the failing heart.氧化应激调节衰竭心脏左心室 PDE5 的表达。
Circulation. 2010 Apr 6;121(13):1474-83. doi: 10.1161/CIRCULATIONAHA.109.906818. Epub 2010 Mar 22.

引用本文的文献

6
Cyclic GMP and PKG Signaling in Heart Failure.心力衰竭中的环磷酸鸟苷与蛋白激酶G信号传导
Front Pharmacol. 2022 Apr 11;13:792798. doi: 10.3389/fphar.2022.792798. eCollection 2022.
9
Myocardial Impact of NHE1 Regulation by Sildenafil.西地那非对NHE1调节的心肌影响。
Front Cardiovasc Med. 2021 Feb 22;8:617519. doi: 10.3389/fcvm.2021.617519. eCollection 2021.

本文引用的文献

3
Intramyocardial fibroblast myocyte communication.心肌成纤维细胞-心肌细胞通讯。
Circ Res. 2010 Jan 8;106(1):47-57. doi: 10.1161/CIRCRESAHA.109.207456.
7
Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics.环鸟苷酸信号在心血管病理生理学和治疗学中的作用。
Pharmacol Ther. 2009 Jun;122(3):216-38. doi: 10.1016/j.pharmthera.2009.02.009. Epub 2009 Mar 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验