Suppr超能文献

挖掘基因表达谱:核主成分分析和奇异值分解的集成实现。

Mining gene expression profiles: an integrated implementation of kernel principal component analysis and singular value decomposition.

机构信息

Department of Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.

出版信息

Genomics Proteomics Bioinformatics. 2010 Sep;8(3):200-10. doi: 10.1016/S1672-0229(10)60022-8.

Abstract

The detection of genes that show similar profiles under different experimental conditions is often an initial step in inferring the biological significance of such genes. Visualization tools are used to identify genes with similar profiles in microarray studies. Given the large number of genes recorded in microarray experiments, gene expression data are generally displayed on a low dimensional plot, based on linear methods. However, microarray data show nonlinearity, due to high-order terms of interaction between genes, so alternative approaches, such as kernel methods, may be more appropriate. We introduce a technique that combines kernel principal component analysis (KPCA) and Biplot to visualize gene expression profiles. Our approach relies on the singular value decomposition of the input matrix and incorporates an additional step that involves KPCA. The main properties of our method are the extraction of nonlinear features and the preservation of the input variables (genes) in the output display. We apply this algorithm to colon tumor, leukemia and lymphoma datasets. Our approach reveals the underlying structure of the gene expression profiles and provides a more intuitive understanding of the gene and sample association.

摘要

在不同实验条件下表现出相似谱的基因的检测通常是推断这些基因的生物学意义的初始步骤。可视化工具用于识别微阵列研究中具有相似谱的基因。考虑到微阵列实验中记录的大量基因,通常基于线性方法将基因表达数据显示在低维图上。然而,由于基因之间的高阶相互作用,微阵列数据呈现出非线性,因此替代方法,如核方法,可能更合适。我们引入了一种结合核主成分分析 (KPCA) 和双标图的技术来可视化基因表达谱。我们的方法依赖于输入矩阵的奇异值分解,并包含涉及 KPCA 的附加步骤。我们方法的主要特性是提取非线性特征和在输出显示中保留输入变量(基因)。我们将此算法应用于结肠癌、白血病和淋巴瘤数据集。我们的方法揭示了基因表达谱的潜在结构,并提供了对基因和样本关联的更直观的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68b/5054124/1c5ee6e3555e/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验