Suppr超能文献

基于初级基因组学数据集的功能富集分析的广义随机集框架。

Generalized random set framework for functional enrichment analysis using primary genomics datasets.

机构信息

Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.

出版信息

Bioinformatics. 2011 Jan 1;27(1):70-7. doi: 10.1093/bioinformatics/btq593. Epub 2010 Oct 22.

Abstract

MOTIVATION

Functional enrichment analysis using primary genomics datasets is an emerging approach to complement established methods for functional enrichment based on predefined lists of functionally related genes. Currently used methods depend on creating lists of 'significant' and 'non-significant' genes based on ad hoc significance cutoffs. This can lead to loss of statistical power and can introduce biases affecting the interpretation of experimental results.

RESULTS

We developed and validated a new statistical framework, generalized random set (GRS) analysis, for comparing the genomic signatures in two datasets without the need for gene categorization. In our tests, GRS produced correct measures of statistical significance, and it showed dramatic improvement in the statistical power over other methods currently used in this setting. We also developed a procedure for identifying genes driving the concordance of the genomics profiles and demonstrated a dramatic improvement in functional coherence of genes identified in such analysis.

AVAILABILITY

GRS can be downloaded as part of the R package CLEAN from http://ClusterAnalysis.org/. An online implementation is available at http://GenomicsPortals.org/.

摘要

动机

使用原始基因组数据集进行功能富集分析是一种补充基于预定义功能相关基因列表进行功能富集的既定方法的新兴方法。目前使用的方法依赖于根据特定的显著性截止值创建“显著”和“非显著”基因的列表。这可能导致统计功效的损失,并可能引入影响实验结果解释的偏差。

结果

我们开发并验证了一种新的统计框架,广义随机集(GRS)分析,用于比较两个数据集的基因组特征,而无需进行基因分类。在我们的测试中,GRS 产生了正确的统计显著性度量,并且与当前在此环境中使用的其他方法相比,它在统计功效方面有了显著的提高。我们还开发了一种用于识别驱动基因组特征一致性的基因的程序,并证明了在这种分析中鉴定的基因的功能一致性有了显著提高。

可用性

GRS 可以从 http://ClusterAnalysis.org/ 下载到 R 包 CLEAN 中。在线实现可在 http://GenomicsPortals.org/ 获得。

相似文献

2
CLEAN: CLustering Enrichment ANalysis.CLEAN:聚类富集分析。
BMC Bioinformatics. 2009 Jul 29;10:234. doi: 10.1186/1471-2105-10-234.
4
iBBiG: iterative binary bi-clustering of gene sets.iBBiG:基因集的迭代二进制二分聚类。
Bioinformatics. 2012 Oct 1;28(19):2484-92. doi: 10.1093/bioinformatics/bts438. Epub 2012 Jul 12.

引用本文的文献

本文引用的文献

4
CLEAN: CLustering Enrichment ANalysis.CLEAN:聚类富集分析。
BMC Bioinformatics. 2009 Jul 29;10:234. doi: 10.1186/1471-2105-10-234.
7
Influence of fatty acid diets on gene expression in rat mammary epithelial cells.脂肪酸饮食对大鼠乳腺上皮细胞基因表达的影响。
Physiol Genomics. 2009 Jun 10;38(1):80-8. doi: 10.1152/physiolgenomics.00007.2009. Epub 2009 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验