Suppr超能文献

可扩展火焰合成二氧化硅纳米线:生长动力学。

Scalable flame synthesis of SiO2 nanowires: dynamics of growth.

机构信息

Department of Process and Mechanical Engineering, Institute of Process Engineering, ETH Zurich, Zurich, Switzerland.

出版信息

Nanotechnology. 2010 Nov 19;21(46):465604. doi: 10.1088/0957-4484/21/46/465604. Epub 2010 Oct 25.

Abstract

Silica nanowire arrays were grown directly onto plain glass substrates by scalable flame spray pyrolysis of organometallic solutions (hexamethyldisiloxane or tetraethyl orthosilicate). The silicon dioxide films consisted of a network of interwoven nanowires from a few to several hundred nanometres long (depending on the process conditions) and about 20 nm in diameter, as determined by scanning electron microscopy. These films were formed rapidly (within 10-20 s) at high growth rates (ca 11-30 nm s(-1)) by chemical vapour deposition (surface growth) at ambient conditions on the glass substrate as determined by thermophoretic sampling of the flame aerosol and microscopy. In contrast, on high purity quartz nearly no nanowires were grown while on steel substrates porous SiO(2) films were formed. Functionalization with perfluorooctyl triethoxysilane converted the nanowire surface from super-hydrophilic to hydrophobic. Additionally, their hermetic coating by thin carbon layers was demonstrated also revealing their potential as substrates for synthesis of other functional 1D composite structures. This approach is a significant step towards large scale synthesis of SiO(2) nanowires facilitating their utilization in several applications.

摘要

采用可扩展的火焰喷雾热解有机金属溶液(六甲基二硅氧烷或正硅酸乙酯),直接在普通玻璃衬底上生长了硅纳米线阵列。通过扫描电子显微镜确定,二氧化硅薄膜由几到几百纳米长(取决于工艺条件)、直径约 20nm 的相互交织的纳米线网络组成。这些薄膜通过在环境条件下的化学气相沉积(表面生长)快速形成(在 10-20 秒内),在玻璃衬底上的生长速率较高(约为 11-30nm/s),这是通过火焰气溶胶的热泳采样和显微镜确定的。相比之下,在高纯石英上几乎没有生长纳米线,而在钢衬底上则形成了多孔的 SiO2 薄膜。用全氟辛基三乙氧基硅烷进行功能化,将纳米线表面从超亲水变为疏水。此外,还通过薄的碳层对其进行了密封涂层,这也显示了它们作为合成其他功能 1D 复合结构的基底的潜力。这种方法是大规模合成 SiO2 纳米线的重要一步,有利于它们在多个应用中的应用。

相似文献

1
Scalable flame synthesis of SiO2 nanowires: dynamics of growth.
Nanotechnology. 2010 Nov 19;21(46):465604. doi: 10.1088/0957-4484/21/46/465604. Epub 2010 Oct 25.
3
Silica nanowire arrays for diffraction-based bioaffinity sensing.
Chemistry. 2014 Aug 18;20(34):10802-10. doi: 10.1002/chem.201304800. Epub 2014 Mar 3.
4
Surface energy and stress driven growth of extremely long and high-density ZnO nanowires using a thermal step-oxidation process.
RSC Adv. 2024 Sep 3;14(38):28086-28097. doi: 10.1039/d4ra03128h. eCollection 2024 Aug 29.
5
Protocol for growing silica nanowires on various substrates to enhance superwetting and self-jumping properties.
STAR Protoc. 2021 Dec 29;3(1):101066. doi: 10.1016/j.xpro.2021.101066. eCollection 2022 Mar 18.
6
Patterned growth of silicon oxide nanowires from iron ion implanted SiO2 substrates.
Nanotechnology. 2009 Apr 1;20(13):135307. doi: 10.1088/0957-4484/20/13/135307. Epub 2009 Mar 10.
7
Thermoplasmonic Nano-Hybrid Core@Shell Ag@SiO Films Engineered via One-Step Flame Spray Pyrolysis.
Nanomaterials (Basel). 2025 May 15;15(10):743. doi: 10.3390/nano15100743.
9
Synthesis of SiC nanowires with in-situ deposition of carbon coating.
J Nanosci Nanotechnol. 2005 Feb;5(2):255-8. doi: 10.1166/jnn.2005.024.

引用本文的文献

1
Fast Growth of Ultralong Silica Nanowires during Active Oxidation of Passivated Silicon Carbide.
ACS Omega. 2025 Apr 25;10(17):17435-17440. doi: 10.1021/acsomega.4c10702. eCollection 2025 May 6.
2
Surface Modification of Magnetic Iron Oxide Nanoparticles.
Nanomaterials (Basel). 2018 Oct 9;8(10):810. doi: 10.3390/nano8100810.
3
Structural Stability and Performance of Noble Metal-Free SnO2-Based Gas Sensors.
Biosensors (Basel). 2012 May 29;2(2):221-33. doi: 10.3390/bios2020221.

本文引用的文献

1
Flame aerosol deposition of Y2O3:Eu nanophosphor screens and their photoluminescent performance.
Nanotechnology. 2010 Jun 4;21(22):225603. doi: 10.1088/0957-4484/21/22/225603. Epub 2010 May 7.
3
The ultimate strength of glass silica nanowires.
Nano Lett. 2009 Feb;9(2):831-5. doi: 10.1021/nl803581r.
4
Integration of photonic and silver nanowire plasmonic waveguides.
Nat Nanotechnol. 2008 Nov;3(11):660-5. doi: 10.1038/nnano.2008.281. Epub 2008 Oct 5.
5
Superwetting nanowire membranes for selective absorption.
Nat Nanotechnol. 2008 Jun;3(6):332-6. doi: 10.1038/nnano.2008.136. Epub 2008 May 30.
6
High-performance lithium battery anodes using silicon nanowires.
Nat Nanotechnol. 2008 Jan;3(1):31-5. doi: 10.1038/nnano.2007.411. Epub 2007 Dec 16.
7
Nanoscale memory cell based on a nanoelectromechanical switched capacitor.
Nat Nanotechnol. 2008 Jan;3(1):26-30. doi: 10.1038/nnano.2007.417. Epub 2007 Dec 23.
8
Synergetic nanowire growth.
Nat Nanotechnol. 2007 Sep;2(9):541-4. doi: 10.1038/nnano.2007.263. Epub 2007 Sep 2.
9
Materials science. Nanowires in nanoelectronics.
Science. 2008 Feb 1;319(5863):579-80. doi: 10.1126/science.1154446.
10
Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors.
Nat Mater. 2007 May;6(5):379-84. doi: 10.1038/nmat1891. Epub 2007 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验