Dimitriou Christos, Deligiannakis Yiannis
Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece.
Nanomaterials (Basel). 2025 May 15;15(10):743. doi: 10.3390/nano15100743.
Thermoplasmonic heat generation by silver (Ag) nanoparticles can harness visible light to efficiently produce localized heating. Flame spray pyrolysis (FSP) is a powerful one-step synthesis technology for fabricating plasmonic Ag-based nanostructures. In the present study, we employed FSP to engineer core@shell Ag@SiO nanoparticles coated with an ultrathin (1-2 nm) silica (SiO) nanolayer in a single step with their deposition as films onto solid substrates. Accordingly, we engineered a library of Ag@SiO nanofilms with precisely controlled thicknesses in the range of 1-23 μm. A systematic study of the thermoplasmonic heat-generation efficiency (ΔT) of the films under visible-light irradiation (LED, λ = 405 nm) revealed that the films' compactness and thickness are key parameters governing the heat-generation efficiency and thermal response rate. Moreover, we show that the substrate type can also play a key role; Ag@SiO films on glass-fiber filters (PGFFs) enabled faster temperature increase (dT/dt) and a higher maximum temperature gain (ΔT) compared with Ag@SiO films on glass substrates (PGSs). The photothermal conversion efficiencies were approximately 60%, with the highest efficiency (η = 65%) observed in the thinner impinged film. This study demonstrates that FSP-derived Ag@SiO nanofilms provide a versatile and scalable platform for thermoplasmonic heat generation applications with significant industrial potential.
银(Ag)纳米颗粒产生的热等离子体热可以利用可见光有效地产生局部加热。火焰喷雾热解(FSP)是一种用于制造基于等离子体Ag的纳米结构的强大一步合成技术。在本研究中,我们采用FSP一步法制备了包覆超薄(1-2nm)二氧化硅(SiO)纳米层的核壳Ag@SiO纳米颗粒,并将其作为薄膜沉积在固体基板上。因此,我们设计了一系列厚度精确控制在1-23μm范围内的Ag@SiO纳米薄膜。对可见光(LED,λ = 405nm)照射下薄膜的热等离子体热产生效率(ΔT)进行的系统研究表明,薄膜的致密性和厚度是控制热产生效率和热响应速率的关键参数。此外,我们表明基板类型也可以发挥关键作用;与玻璃基板(PGS)上的Ag@SiO薄膜相比,玻璃纤维滤膜(PGFF)上的Ag@SiO薄膜能够实现更快的温度升高(dT/dt)和更高的最大温度增益(ΔT)。光热转换效率约为60%,在较薄的冲击薄膜中观察到最高效率(η = 65%)。这项研究表明,FSP衍生的Ag@SiO纳米薄膜为具有巨大工业潜力的热等离子体热产生应用提供了一个通用且可扩展的平台。