Department of Biochemistry and Molecular Biology, Campus Box 1870, Colorado State University, Fort Collins, CO 80523, USA.
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19254-9. doi: 10.1073/pnas.1009650107. Epub 2010 Oct 25.
Histone posttranslational modifications and chromatin dynamics are inextricably linked to eukaryotic gene expression. Among the many modifications that have been characterized, histone tail acetylation is most strongly correlated with transcriptional activation. In Metazoa, promoters of transcriptionally active genes are generally devoid of physically repressive nucleosomes, consistent with the contemporaneous binding of the large RNA polymerase II transcription machinery. The histone acetyltransferase p300 is also detected at active gene promoters, flanked by regions of histone hyperacetylation. Although the correlation between histone tail acetylation and gene activation is firmly established, the mechanisms by which acetylation facilitates this fundamental biological process remain poorly understood. To explore the role of acetylation in nucleosome dynamics, we utilized an immobilized template carrying a natural promoter reconstituted with various combinations of wild-type and mutant histones. We find that the histone H3 N-terminal tail is indispensable for activator, p300, and acetyl-CoA-dependent nucleosome eviction mediated by the histone chaperone Nap1. Significantly, we identify H3 lysine 14 as the essential p300 acetylation substrate required for dissociation of the histone octamer from the promoter DNA. Together, a total of 11 unique mutant octamer sets corroborated these observations and revealed a striking correlation between nucleosome eviction and strong activator and acetyl-CoA-dependent transcriptional activation. These novel findings uncover an exclusive role for H3 lysine 14 acetylation in facilitating the ATP-independent and transcription-independent disassembly of promoter nucleosomes by Nap1. Furthermore, these studies directly couple nucleosome disassembly with strong, activator-dependent transcription.
组蛋白翻译后修饰和染色质动力学与真核基因表达密切相关。在已经描述的许多修饰中,组蛋白尾部乙酰化与转录激活的相关性最强。在后生动物中,转录活跃基因的启动子通常没有物理上有抑制作用的核小体,与大的 RNA 聚合酶 II 转录机制的同时结合一致。组蛋白乙酰转移酶 p300 也在活性基因启动子处被检测到,其侧翼是组蛋白高度乙酰化的区域。尽管组蛋白尾部乙酰化与基因激活之间的相关性已被牢固确立,但乙酰化促进这一基本生物学过程的机制仍知之甚少。为了探索乙酰化在核小体动力学中的作用,我们利用了一种固定模板,该模板带有通过野生型和突变组蛋白的各种组合重新构建的天然启动子。我们发现组蛋白 H3 N 端尾部对于激活剂、p300 和组蛋白伴侣 Nap1 介导的乙酰-CoA 依赖性核小体逐出是必不可少的。重要的是,我们确定 H3 赖氨酸 14 是必需的 p300 乙酰化底物,用于将组蛋白八聚体从启动子 DNA 上解离。总共 11 个独特的突变八聚体集证实了这些观察结果,并揭示了核小体逐出与强激活剂和乙酰-CoA 依赖性转录激活之间的惊人相关性。这些新发现揭示了 H3 赖氨酸 14 乙酰化在 Nap1 介导的启动子核小体的 ATP 非依赖性和转录非依赖性解体中发挥独特作用。此外,这些研究直接将核小体解体与强激活剂依赖性转录联系起来。