School of Electronics and Computer Science, University of Southampton, Southampton, SO171BJ, UK.
IEEE Trans Biomed Eng. 2011 Apr;58(4):927-34. doi: 10.1109/TBME.2010.2089521. Epub 2010 Oct 25.
Sonoporation has been shown to have an important role in biotechnology for gene therapy and drug delivery. This paper presents a novel microfluidic sonoporation system that achieves high rates of cell transfection and cell viability by operating the sonoporation chamber at resonance. The paper presents a theoretical analysis of the resonant sonoporation chamber design, which achieves sonoporation by forming an ultrasonic standing wave across the chamber. A piezoelectric transducer (PZT 26) is used to generate the ultrasound and the different material thicknesses have been identified to give a chamber resonance at 980 kHz. The efficiency of the sonoporation system was determined experimentally under a range of sonoporation conditions and different exposures time (5, 10, 15, and 20 s, respectively) using HeLa cells and plasmid (peGFP-N1). The experimental results achieve a cell transfection efficiency of 68.9% (analysis of variance, ANOVA, p < 0.05) at the resonant frequency of 980 kHz at 100 V(p-p) (19.5 MPa) with a cell viability of 77% after 10 s of insonication.
声孔作用已被证明在生物技术领域的基因治疗和药物输送方面具有重要作用。本文提出了一种新颖的微流控声孔系统,通过在谐振状态下操作声孔室来实现高转染率和细胞活力。本文对谐振声孔室设计进行了理论分析,该设计通过在腔室内形成超声驻波来实现声孔作用。压电换能器(PZT 26)用于产生超声波,并且已经确定了不同的材料厚度,以使腔室在 980 kHz 处产生共振。使用 HeLa 细胞和质粒(peGFP-N1),在不同的声孔条件和不同的暴露时间(分别为 5、10、15 和 20 s)下进行了实验,确定了声孔系统的效率。实验结果在 980 kHz 的谐振频率下,在 100 V(p-p)(19.5 MPa)下达到了 68.9%的细胞转染效率(方差分析,ANOVA,p < 0.05),在 10 s 的超声处理后细胞活力为 77%。