ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory, Australia.
Plant Cell. 2010 Oct;22(10):3423-38. doi: 10.1105/tpc.110.074781. Epub 2010 Oct 26.
Here, we describe the snowy cotyledon3 (sco3-1) mutation, which impairs chloroplast and etioplast development in Arabidopsis thaliana seedlings. SCO3 is a member of a largely uncharacterized protein family unique to the plant kingdom. The sco3-1 mutation alters chloroplast morphology and development, reduces chlorophyll accumulation, impairs thylakoid formation and photosynthesis in seedlings, and results in photoinhibition under extreme CO(2) concentrations in mature leaves. There are no readily apparent changes to chloroplast biology, such as transcription or assembly that explain the disruption to chloroplast biogenesis. Indeed, SCO3 is actually targeted to another organelle, specifically to the periphery of peroxisomes. However, impaired chloroplast development cannot be attributed to perturbed peroxisomal metabolic processes involving germination, fatty acid β-oxidation or photorespiration, though there are so far undescribed changes in low and high CO(2) sensitivity in seedlings and young true leaves. Many of the chloroplasts are bilobed, and some have persistent membranous extensions that encircle other cellular components. Significantly, there are changes to the cytoskeleton in sco3-1, and microtubule inhibitors have similar effects on chloroplast biogenesis as sco3-1 does. The localization of SCO3 to the periphery of the peroxisomes was shown to be dependent on a functional microtubule cytoskeleton. Therefore, the microtubule and peroxisome-associated SCO3 protein is required for chloroplast development, and sco3-1, along with microtubule inhibitors, demonstrates an unexpected role for the cytoskeleton and peroxisomes in chloroplast biogenesis.
在这里,我们描述了 snowy cotyledon3(sco3-1)突变,该突变会损害拟南芥幼苗中的叶绿体和前质体发育。SCO3 是一个在植物王国中特有的、尚未充分描述的蛋白家族的成员。sco3-1 突变改变了叶绿体的形态和发育,减少了叶绿素的积累,损害了幼苗中类囊体的形成和光合作用,并导致成熟叶片在极端 CO2 浓度下发生光抑制。没有明显的变化,如转录或组装,这些变化解释了叶绿体生物发生的中断。事实上,SCO3 实际上被靶向另一种细胞器,特别是过氧化物酶体的外围。然而,叶绿体发育的受损不能归因于涉及发芽、脂肪酸 β-氧化或光呼吸的过氧化物酶体代谢过程的扰动,尽管在幼苗和幼叶中存在未描述的低和高 CO2 敏感性变化。许多叶绿体是双叶的,有些有持续的膜延伸,包围着其他细胞成分。重要的是,在 sco3-1 中,细胞骨架发生了变化,微管抑制剂对叶绿体生物发生的影响与 sco3-1 相似。SCO3 定位于过氧化物酶体的外围,这依赖于一个功能正常的微管细胞骨架。因此,微管和与过氧化物酶体相关的 SCO3 蛋白是叶绿体发育所必需的,并且 sco3-1 与微管抑制剂一起,证明了细胞骨架和过氧化物体在叶绿体生物发生中的意想不到的作用。