Suppr超能文献

优化特定蛋白质支架的结构建模:kunitz 结构域或抑制剂半胱氨酸结。

Optimizing structural modeling for a specific protein scaffold: knottins or inhibitor cystine knots.

机构信息

CNRS, UMR5048, Université Montpellier 1 et 2, Centre de Biochimie Structurale, 34090 Montpellier, France.

出版信息

BMC Bioinformatics. 2010 Oct 28;11:535. doi: 10.1186/1471-2105-11-535.

Abstract

BACKGROUND

Knottins are small, diverse and stable proteins with important drug design potential. They can be classified in 30 families which cover a wide range of sequences (1621 sequenced), three-dimensional structures (155 solved) and functions (> 10). Inter knottin similarity lies mainly between 15% and 40% sequence identity and 1.5 to 4.5 Å backbone deviations although they all share a tightly knotted disulfide core. This important variability is likely to arise from the highly diverse loops which connect the successive knotted cysteines. The prediction of structural models for all knottin sequences would open new directions for the analysis of interaction sites and to provide a better understanding of the structural and functional organization of proteins sharing this scaffold.

RESULTS

We have designed an automated modeling procedure for predicting the three-dimensionnal structure of knottins. The different steps of the homology modeling pipeline were carefully optimized relatively to a test set of knottins with known structures: template selection and alignment, extraction of structural constraints and model building, model evaluation and refinement. After optimization, the accuracy of predicted models was shown to lie between 1.50 and 1.96 Å from native structures at 50% and 10% maximum sequence identity levels, respectively. These average model deviations represent an improvement varying between 0.74 and 1.17 Å over a basic homology modeling derived from a unique template. A database of 1621 structural models for all known knottin sequences was generated and is freely accessible from our web server at http://knottin.cbs.cnrs.fr. Models can also be interactively constructed from any knottin sequence using the structure prediction module Knoter1D3D available from our protein analysis toolkit PAT at http://pat.cbs.cnrs.fr.

CONCLUSIONS

This work explores different directions for a systematic homology modeling of a diverse family of protein sequences. In particular, we have shown that the accuracy of the models constructed at a low level of sequence identity can be improved by 1) a careful optimization of the modeling procedure, 2) the combination of multiple structural templates and 3) the use of conserved structural features as modeling restraints.

摘要

背景

Knottins 是一类具有重要药物设计潜力的小而多样且稳定的蛋白质。它们可分为 30 个家族,涵盖了广泛的序列(1621 个已测序)、三维结构(155 个已解决)和功能(>10 个)。Knottin 之间的相似性主要位于 15%到 40%的序列同一性和 1.5 到 4.5Å的骨架偏差之间,尽管它们都共享一个紧密的交联二硫键核心。这种重要的可变性可能源于连接连续交联半胱氨酸的高度多样化环。预测所有 Knottin 序列的结构模型将为分析相互作用位点开辟新的方向,并提供对共享此支架的蛋白质的结构和功能组织的更好理解。

结果

我们设计了一种自动化建模程序,用于预测 Knottin 的三维结构。同源建模管道的不同步骤经过仔细优化,相对于具有已知结构的 Knottin 测试集:模板选择和对齐、结构约束提取和模型构建、模型评估和细化。优化后,预测模型的准确性在 50%和 10%最大序列同一性水平下,分别介于 1.50 和 1.96Å与天然结构之间。这些平均模型偏差代表在基本同源建模的基础上改进了 0.74 到 1.17Å,该基本同源建模源自唯一的模板。生成了所有已知 Knottin 序列的 1621 个结构模型数据库,并可从我们的网络服务器 http://knottin.cbs.cnrs.fr 免费访问。还可以使用我们的蛋白质分析工具包 PAT 中的结构预测模块 Knoter1D3D 从任何 Knottin 序列交互式构建模型,该模块可从 http://pat.cbs.cnrs.fr 获得。

结论

这项工作探索了系统同源建模的不同方向,适用于多样化的蛋白质序列家族。特别是,我们表明,通过以下方式可以提高在低序列同一性水平下构建模型的准确性:1)仔细优化建模过程,2)组合多个结构模板,3)使用保守的结构特征作为建模约束。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9f6/2984590/0ed0a535f436/1471-2105-11-535-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验