Suppr超能文献

CT 图像分割方法对长骨 3D 重建准确性的影响。

Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions.

机构信息

Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.

出版信息

Med Eng Phys. 2011 Mar;33(2):226-33. doi: 10.1016/j.medengphy.2010.10.002. Epub 2010 Oct 27.

Abstract

An accurate and accessible image segmentation method is in high demand for generating 3D bone models from CT scan data, as such models are required in many areas of medical research. Even though numerous sophisticated segmentation methods have been published over the years, most of them are not readily available to the general research community. Therefore, this study aimed to quantify the accuracy of three popular image segmentation methods, two implementations of intensity thresholding and Canny edge detection, for generating 3D models of long bones. In order to reduce user dependent errors associated with visually selecting a threshold value, we present a new approach of selecting an appropriate threshold value based on the Canny filter. A mechanical contact scanner in conjunction with a microCT scanner was utilised to generate the reference models for validating the 3D bone models generated from CT data of five intact ovine hind limbs. When the overall accuracy of the bone model is considered, the three investigated segmentation methods generated comparable results with mean errors in the range of 0.18-0.24 mm. However, for the bone diaphysis, Canny edge detection and Canny filter based thresholding generated 3D models with a significantly higher accuracy compared to those generated through visually selected thresholds. This study demonstrates that 3D models with sub-voxel accuracy can be generated utilising relatively simple segmentation methods that are available to the general research community.

摘要

从 CT 扫描数据生成 3D 骨骼模型需要一种准确且易于使用的图像分割方法,因为这种模型在许多医学研究领域都需要。尽管多年来已经发表了许多复杂的分割方法,但其中大多数方法并不为普通研究界所使用。因此,本研究旨在量化三种流行的图像分割方法(两种强度阈值分割和 Canny 边缘检测)在生成长骨 3D 模型方面的准确性。为了减少与通过视觉选择阈值相关的用户依赖性误差,我们提出了一种基于 Canny 滤波器选择适当阈值的新方法。使用机械接触式扫描仪和微 CT 扫描仪生成参考模型,以验证从五只完整绵羊后肢的 CT 数据生成的 3D 骨骼模型的准确性。当考虑骨骼模型的整体准确性时,三种研究的分割方法生成的结果相当,平均误差在 0.18-0.24 毫米范围内。然而,对于骨干,Canny 边缘检测和基于 Canny 滤波器的阈值分割生成的 3D 模型的准确性明显高于通过视觉选择阈值生成的 3D 模型。本研究表明,使用普通研究界可获得的相对简单的分割方法可以生成具有亚像素精度的 3D 模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验