Suppr超能文献

适应经济的两足奔跑:肢体结构对三维关节力学的影响。

Adaptations for economical bipedal running: the effect of limb structure on three-dimensional joint mechanics.

机构信息

School of Sport Science, Exercise and Health, University of Western Australia, Crawley, Western Australia 6009, Australia.

出版信息

J R Soc Interface. 2011 May 6;8(58):740-55. doi: 10.1098/rsif.2010.0466. Epub 2010 Oct 28.

Abstract

The purpose of this study was to examine the mechanical adaptations linked to economical locomotion in cursorial bipeds. We addressed this question by comparing mass-matched humans and avian bipeds (ostriches), which exhibit marked differences in limb structure and running economy. We hypothesized that the nearly 50 per cent lower energy cost of running in ostriches is a result of: (i) lower limb-swing mechanical power, (ii) greater stance-phase storage and release of elastic energy, and (iii) lower total muscle power output. To test these hypotheses, we used three-dimensional joint mechanical measurements and a simple model to estimate the elastic and muscle contributions to joint work and power. Contradictory to our first hypothesis, we found that ostriches and humans generate the same amounts of mechanical power to swing the limbs at a similar self-selected running speed, indicating that limb swing probably does not contribute to the difference in energy cost of running between these species. In contrast, we estimated that ostriches generate 120 per cent more stance-phase mechanical joint power via release of elastic energy compared with humans. This elastic mechanical power occurs nearly exclusively at the tarsometatarso-phalangeal joint, demonstrating a shift of mechanical power generation to distal joints compared with humans. We also estimated that positive muscle fibre power is 35 per cent lower in ostriches compared with humans, and is accounted for primarily by higher capacity for storage and release of elastic energy. Furthermore, our analysis revealed much larger frontal and internal/external rotation joint loads during ostrich running than in humans. Together, these findings support the hypothesis that a primary limb structure specialization linked to economical running in cursorial species is an elevated storage and release of elastic energy in tendon. In the ostrich, energy-saving specializations may also include passive frontal and internal/external rotation load-bearing mechanisms.

摘要

本研究旨在探讨与奔跑两足动物经济运动相关的机械适应性。我们通过比较肢体结构和跑步经济性差异显著的质量匹配的人类和鸟类两足动物(鸵鸟)来解决这个问题。我们假设鸵鸟跑步时能量消耗降低近 50%,是由于:(i)较低的肢体摆动机械功率,(ii)较大的支撑阶段弹性储能和释放,以及(iii)较低的总肌肉功率输出。为了验证这些假设,我们使用三维关节力学测量和一个简单的模型来估计弹性和肌肉对关节功和功率的贡献。与我们的第一个假设相反,我们发现鸵鸟和人类在相似的自我选择跑步速度下摆动四肢产生相同数量的机械功率,这表明肢体摆动可能不是这些物种跑步能量消耗差异的原因。相比之下,我们估计鸵鸟在支撑阶段通过释放弹性储能产生比人类多 120%的机械关节功率。这种弹性机械能几乎仅发生在跗跖-跖骨-趾骨关节,表明与人类相比,机械功率生成向远端关节转移。我们还估计鸵鸟的正肌纤维功率比人类低 35%,这主要是由于弹性储能和释放能力较高所致。此外,我们的分析表明鸵鸟跑步时的前向和内/外旋转关节负荷比人类大得多。这些发现共同支持了这样的假设,即与奔跑两足动物经济运动相关的主要肢体结构特化是肌腱中弹性储能和释放能力的提高。在鸵鸟中,节能特化可能还包括被动的前向和内/外旋转承重机制。

相似文献

9
Joint-level mechanics of the walk-to-run transition in humans.人类步行到跑步转换过程中的关节水平力学
J Exp Biol. 2014 Oct 1;217(Pt 19):3519-27. doi: 10.1242/jeb.107599. Epub 2014 Aug 7.

引用本文的文献

本文引用的文献

1
Stance and swing phase costs in human walking.人类行走中的站立和摆动阶段成本。
J R Soc Interface. 2010 Sep 6;7(50):1329-40. doi: 10.1098/rsif.2010.0084. Epub 2010 Mar 31.
3
A model of the lower limb for analysis of human movement.下肢运动分析模型。
Ann Biomed Eng. 2010 Feb;38(2):269-79. doi: 10.1007/s10439-009-9852-5. Epub 2009 Dec 3.
5
The fastest runner on artificial legs: different limbs, similar function?最快的假肢奔跑者:不同的肢体,相似的功能?
J Appl Physiol (1985). 2009 Sep;107(3):903-11. doi: 10.1152/japplphysiol.00174.2009. Epub 2009 Jun 18.
9
Are current measurements of lower extremity muscle architecture accurate?目前对下肢肌肉结构的测量准确吗?
Clin Orthop Relat Res. 2009 Apr;467(4):1074-82. doi: 10.1007/s11999-008-0594-8. Epub 2008 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验