Institut Pasteur, Unité BMGE, Department of Microbiology, 28 Rue du Dr Roux, 75015 Paris, France.
Res Microbiol. 2011 Jan;162(1):53-70. doi: 10.1016/j.resmic.2010.10.004. Epub 2010 Oct 27.
Understanding early evolution is a major challenge for the post-genomic era. A promising way to tackle this issue is to analyze the evolutionary history of key cellular systems through phylogenomic approaches. The current availability of genomic data from representatives of diverse lineages (especially eukaryotes), together with the ever growing number of proteomic characterizations now provides ample material to apply this type of analyses to trace back the origin and evolution of the three domains of life. Here, we have reconstructed the composition of the ancestral mitochondrial ribosome in the Last Eukaryotic Common Ancestor (LECA) and investigated its subsequent evolution in six major eukaryotic supergroups. We infer that LECA possessed a mitochondrial ribosome that was already much larger than its bacterial ancestor, with 19 additional specific proteins, indicating that a certain amount of time occurred between initial endosymbiosis at the origin of the mitochondrion and the diversification of present-day eukaryotic supergroups. Subsequently, mitochondrial ribosomes appear to have undergone a very dynamic evolutionary history in the different eukaryotic lineages, involving the loss of different sets of ribosomal protein-coding genes, their transfer to the host genome, as well as the acquisition of many novel components. This chaotic history for a such fundamental cellular machinery is puzzling, especially when compared to cytosolic, bacterial or chloroplastic ribosomes, which are much more stable. Intriguingly, archaeal ribosomes also show a very dynamic nature, with multiple independent losses among lineages.
理解早期进化是后基因组时代的主要挑战。解决这个问题的一个有前途的方法是通过系统发生基因组学方法分析关键细胞系统的进化历史。目前,来自不同谱系(尤其是真核生物)的基因组数据的可用性,以及越来越多的蛋白质组学特征,为应用这种类型的分析来追溯生命三个域的起源和进化提供了充足的材料。在这里,我们重建了在最后真核生物共同祖先(LECA)中的原始线粒体核糖体的组成,并研究了它在六个主要真核超群中的后续进化。我们推断 LECA 拥有一个比其细菌祖先大得多的线粒体核糖体,具有 19 个额外的特定蛋白质,这表明在最初的线粒体内共生起源和现今真核超群的多样化之间发生了一定的时间。随后,线粒体核糖体在不同的真核谱系中似乎经历了非常动态的进化历史,涉及到不同的核糖体蛋白编码基因的丢失、它们向宿主基因组的转移,以及许多新成分的获得。这种对于如此基本的细胞机制的混乱历史令人费解,特别是与细胞质、细菌或叶绿体核糖体相比,它们更加稳定。有趣的是,古菌核糖体也表现出非常动态的性质,在谱系之间存在多次独立的丢失。