Suppr超能文献

陆生腹足类黏附运动的力学机制。

The mechanics of the adhesive locomotion of terrestrial gastropods.

机构信息

Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0411, USA.

出版信息

J Exp Biol. 2010 Nov 15;213(Pt 22):3920-33. doi: 10.1242/jeb.046706.

Abstract

Research on the adhesive locomotion of terrestrial gastropods is gaining renewed interest as it provides a source of guidance for the design of soft biomimetic robots that can perform functions currently not achievable by conventional rigid vehicles. The locomotion of terrestrial gastropods is driven by a train of periodic muscle contractions (pedal waves) and relaxations (interwaves) that propagate from their tails to their heads. These ventral waves interact with a thin layer of mucus secreted by the animal that transmits propulsive forces to the ground. The exact mechanism by which these propulsive forces are generated is still a matter of controversy. Specifically, the exact role played by the complex rheological and adhesive properties of the mucus is not clear. To provide quantitative data that could shed light on this question, we use a newly developed technique to measure, with high temporal and spatial resolution, the propulsive forces that terrestrial gastropods generate while crawling on smooth flat surfaces. The traction force measurements demonstrate the importance of the finite yield stress of the mucus in generating thrust and are consistent with the surface of the ventral foot being lifted with the passage of each pedal wave. We also show that a forward propulsive force is generated beneath each stationary interwave and that this net forward component is balanced by the resistance caused by the outer rim of the ventral foot, which slides at the speed of the center of mass of the animal. Simultaneously, the animal pulls the rim laterally inward. Analysis of the traction forces reveals that the kinematics of the pedal waves is far more complex than previously thought, showing significant spatial variation (acceleration/deceleration) as the waves move from the tail to the head of the animal.

摘要

陆地蜗牛的黏附运动研究重新引起了人们的兴趣,因为它为设计能够执行传统刚性车辆无法实现的功能的软仿生机器人提供了指导。陆地蜗牛的运动是由一系列周期性的肌肉收缩(足波)和松弛(间波)驱动的,这些波从尾部传播到头部。这些腹足波与动物分泌的一层薄薄的黏液相互作用,将推进力传递到地面。这些推进力是如何产生的确切机制仍存在争议。具体来说,黏液的复杂流变学和黏附特性的确切作用尚不清楚。为了提供可能阐明这个问题的定量数据,我们使用新开发的技术以高时空分辨率测量陆地蜗牛在光滑平坦表面上爬行时产生的推进力。牵引力测量表明黏液的有限屈服应力在产生推力方面的重要性,并与腹足表面随着每一个足波的通过而被抬起的事实一致。我们还表明,每个静止的间波下方都会产生一个向前的推进力,并且这个净向前分量被腹足外边缘的阻力平衡,该外边缘以动物质心的速度滑动。同时,动物将边缘向侧面向内拉动。牵引力分析表明,足波的运动学远比以前想象的复杂,显示出显著的空间变化(加速/减速),因为波从动物的尾部移动到头部。

相似文献

2
The advantage of mucus for adhesive locomotion in gastropods.腹足纲动物中黏液在黏附运动方面的优势。
J Theor Biol. 2014 Jul 21;353:133-41. doi: 10.1016/j.jtbi.2014.02.024. Epub 2014 Mar 13.
5
The similarity of crawling mechanisms in aquatic and terrestrial gastropods.水生和陆生腹足类动物的爬行机制的相似性。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2019 Feb;205(1):1-11. doi: 10.1007/s00359-018-1294-9. Epub 2018 Oct 9.
10
Honeybees use their wings for water surface locomotion.蜜蜂利用翅膀在水面上运动。
Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24446-24451. doi: 10.1073/pnas.1908857116. Epub 2019 Nov 18.

引用本文的文献

2
Fluid Ejections in Nature.自然界中的流体喷射
Annu Rev Chem Biomol Eng. 2024 Jul;15(1):187-217. doi: 10.1146/annurev-chembioeng-100722-113148. Epub 2024 Jul 3.
3
4
Orchids reduce attachment of herbivorous snails with leaf trichomes.兰花通过叶毛减少食草蜗牛的附着。
PLoS One. 2023 Aug 18;18(8):e0285731. doi: 10.1371/journal.pone.0285731. eCollection 2023.
7
Imaging dynamic three-dimensional traction stresses.成像动态三维牵引应力。
Sci Adv. 2022 Mar 18;8(11):eabm0984. doi: 10.1126/sciadv.abm0984. Epub 2022 Mar 16.
8
Rear traction forces drive adherent tissue migration in vivo.后向牵引力在体内驱动黏附组织迁移。
Nat Cell Biol. 2022 Feb;24(2):194-204. doi: 10.1038/s41556-022-00844-9. Epub 2022 Feb 14.

本文引用的文献

4
Locomotion: the cost of gastropod crawling.运动:腹足类爬行的代价。
Science. 1980 Jun 13;208(4449):1288-90. doi: 10.1126/science.208.4449.1288.
5
6
Fast locomotion in caterpillars.毛虫的快速移动
J Insect Physiol. 1999 Jun;45(6):525-533. doi: 10.1016/s0022-1910(98)00157-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验