Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Anal Chem. 2010 Dec 1;82(23):9694-701. doi: 10.1021/ac101714u. Epub 2010 Nov 1.
In this work, we demonstrate the capability of using lipid vesicles biofunctionalized with protein channels to perform single-molecule fluorescence measurements over a biologically relevant temperature range. Lipid vesicles can serve as an ideal nanocontainer for single-molecule fluorescence measurements of biomacromolecules. One serious limitation of the vesicle encapsulation method has been that the lipid membrane is practically impermeable to most ions and small molecules, limiting its application to observing reactions in equilibrium with the initial buffer condition. To permeabilize the barrier, Staphylococcus aureus toxin α-hemolysin (aHL) channels have been incorporated into the membrane. These aHL channels have been characterized using single-molecule fluorescence resonance energy transfer signals from vesicle-encapsulated guanine-rich DNA that folds in a G-quadruplex motif as well as from the Rep helicase-DNA system. We show that these aHL channels are permeable to monovalent ions and small molecules, such as ATP, over the biologically relevant temperature range (17-37 °C). Ions can efficiently pass through preformed aHL channels to initiate DNA folding without any detectable delay. With addition of the cholesterol to the membrane, we also report a 35-fold improvement in the aHL channel formation efficiency, making this approach more practical for wider applications. Finally, the temperature-dependent single-molecule enzymatic study inside these nanocontainers is demonstrated by measuring the Rep helicase repetitive shuttling dynamics along a single-stranded DNA at various temperatures. The permeability of the biofriendly nanocontainer over a wide range of temperature would be effectively applied to other surface-based high-throughput measurements and sensors beyond the single-molecule fluorescence measurements.
在这项工作中,我们展示了使用生物功能化脂质体的能力,该脂质体具有蛋白通道,可以在生物学相关的温度范围内进行单分子荧光测量。脂质体可以作为生物大分子单分子荧光测量的理想纳米容器。脂质体封装方法的一个严重限制是,脂质膜实际上对大多数离子和小分子是不可渗透的,这限制了其在与初始缓冲条件达到平衡的反应观察中的应用。为了使屏障具有渗透性,已经将金黄色葡萄球菌毒素 α-溶血素 (aHL) 通道掺入到膜中。这些 aHL 通道已通过用囊泡包封的富含鸟嘌呤的 DNA 的单分子荧光共振能量转移信号进行了表征,该 DNA 折叠成 G-四链体基序,以及通过 Rep 解旋酶-DNA 系统。我们表明,这些 aHL 通道在生物学相关的温度范围内(17-37°C)对单价离子和小分子(如 ATP)是可渗透的。离子可以有效地通过预先形成的 aHL 通道进入,无需任何可检测的延迟即可引发 DNA 折叠。通过向膜中添加胆固醇,我们还报告了 aHL 通道形成效率提高了 35 倍,这使得该方法更适用于更广泛的应用。最后,通过在各种温度下测量 Rep 解旋酶沿单链 DNA 的重复穿梭动力学,证明了这些纳米容器中随温度变化的单分子酶学研究。在广泛的温度范围内,生物友好型纳米容器的渗透性将有效地应用于单分子荧光测量以外的其他基于表面的高通量测量和传感器。