Department of Mathematics, Queen's University, Kingston, ON, Canada.
J Evol Biol. 2010 Dec;23(12):2569-78. doi: 10.1111/j.1420-9101.2010.02122.x. Epub 2010 Oct 7.
Studies of the evolution of a social trait often make ecological assumptions (of population structure, life history), and thus a trait can be studied many different times with different assumptions. Here, I consider a Moran model of continuous reproduction and use an inclusive fitness analysis to investigate the relationships between fecundity or survival selection and birth-death (BD) or death-birth (DB) demography on the evolution of a social trait. A simple symmetry obtains: fecundity (respectively survival) effects under BD behave the same as survival (respectively fecundity) effects under DB. When these results are specialized to a homogeneous population, greatly simplified conditions for a positive inclusive fitness effect are obtained in both a finite and an infinite population. The results are established using the elegant formalism of mathematical group theory and are illustrated with an example of a finite population arranged in a cycle with asymmetric offspring dispersal.
研究社会特征的进化通常需要做出关于种群结构和生活史等生态方面的假设,因此可以多次使用不同的假设来研究同一特征。在这里,我考虑了连续繁殖的 Moran 模型,并使用适合度分析来研究在社会特征的进化中,生育力或存活率选择与出生-死亡(BD)或死亡-出生(DB)人口统计学之间的关系。这里存在一个简单的对称关系:BD 下的生育力(或存活率)效应与 DB 下的存活率(或生育力)效应相同。当将这些结果专门应用于同质种群时,在有限和无限种群中都得到了简化的正适合度效应条件。这些结果是使用数学群论的优雅形式主义建立的,并通过一个具有不对称后代扩散的循环排列的有限种群的例子进行了说明。