Suppr超能文献

使用phenix.refine进行联合X射线和中子精修。

Joint X-ray and neutron refinement with phenix.refine.

作者信息

Afonine Pavel V, Mustyakimov Marat, Grosse-Kunstleve Ralf W, Moriarty Nigel W, Langan Paul, Adams Paul D

机构信息

Lawrence Berkeley National Laboratory, Physical Biosciences Division, MS 64R0121, CA 94720, USA.

出版信息

Acta Crystallogr D Biol Crystallogr. 2010 Nov;66(Pt 11):1153-63. doi: 10.1107/S0907444910026582. Epub 2010 Oct 20.

Abstract

Approximately 85% of the structures deposited in the Protein Data Bank have been solved using X-ray crystallography, making it the leading method for three-dimensional structure determination of macromolecules. One of the limitations of the method is that the typical data quality (resolution) does not allow the direct determination of H-atom positions. Most hydrogen positions can be inferred from the positions of other atoms and therefore can be readily included into the structure model as a priori knowledge. However, this may not be the case in biologically active sites of macromolecules, where the presence and position of hydrogen is crucial to the enzymatic mechanism. This makes the application of neutron crystallography in biology particularly important, as H atoms can be clearly located in experimental neutron scattering density maps. Without exception, when a neutron structure is determined the corresponding X-ray structure is also known, making it possible to derive the complete structure using both data sets. Here, the implementation of crystallographic structure-refinement procedures that include both X-ray and neutron data (separate or jointly) in the PHENIX system is described.

摘要

蛋白质数据库中约85%的结构是通过X射线晶体学解析出来的,这使其成为确定大分子三维结构的主要方法。该方法的局限性之一在于,典型的数据质量(分辨率)不允许直接确定氢原子的位置。大多数氢原子的位置可以从其他原子的位置推断出来,因此可以作为先验知识轻松纳入结构模型。然而,在大分子的生物活性位点可能并非如此,氢原子的存在和位置对酶促机制至关重要。这使得中子晶体学在生物学中的应用尤为重要,因为氢原子能够在实验中子散射密度图中清晰定位。无一例外,当确定了中子结构时,相应的X射线结构也已知,从而有可能利用这两个数据集推导完整的结构。在此,描述了在PHENIX系统中实施包含X射线和中子数据(单独或联合)的晶体学结构精修程序。

相似文献

1
Joint X-ray and neutron refinement with phenix.refine.
Acta Crystallogr D Biol Crystallogr. 2010 Nov;66(Pt 11):1153-63. doi: 10.1107/S0907444910026582. Epub 2010 Oct 20.
2
Improved joint X-ray and neutron refinement procedure in Phenix.
Acta Crystallogr D Struct Biol. 2023 Dec 1;79(Pt 12):1079-1093. doi: 10.1107/S2059798323008914. Epub 2023 Nov 9.
3
Neutron crystallographic refinement with REFMAC5 from the CCP4 suite.
Acta Crystallogr D Struct Biol. 2023 Dec 1;79(Pt 12):1056-1070. doi: 10.1107/S2059798323008793. Epub 2023 Nov 3.
5
Combining X-ray and neutron crystallography with spectroscopy.
Acta Crystallogr D Struct Biol. 2017 Feb 1;73(Pt 2):141-147. doi: 10.1107/S2059798316016314.
6
7
Unambiguous determination of H-atom positions: comparing results from neutron and high-resolution X-ray crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 May;66(Pt 5):558-67. doi: 10.1107/S0907444910005494. Epub 2010 Apr 21.
8
Rapid visualization of hydrogen positions in protein neutron crystallographic structures.
Acta Crystallogr D Biol Crystallogr. 2012 Jan;68(Pt 1):35-41. doi: 10.1107/S0907444911048402. Epub 2011 Dec 9.
9
What are the current limits on determination of protonation state using neutron macromolecular crystallography?
Methods Enzymol. 2020;634:225-255. doi: 10.1016/bs.mie.2020.01.008. Epub 2020 Feb 13.
10
Evaluation of models determined by neutron diffraction and proposed improvements to their validation and deposition.
Acta Crystallogr D Struct Biol. 2018 Aug 1;74(Pt 8):800-813. doi: 10.1107/S2059798318004588. Epub 2018 Jul 24.

引用本文的文献

3
Terminal alkyne formation by a pyridoxal phosphate-dependent enzyme.
Nat Chem Biol. 2025 Jun 25. doi: 10.1038/s41589-025-01954-9.
5
Structural basis of cuproenzyme nitrite reduction at the level of a single hydrogen atom.
J Biol Chem. 2025 May 26;301(7):110290. doi: 10.1016/j.jbc.2025.110290.
6
Characterization of a consensus-designed -cinnamic acid decarboxylase for styrene biosynthesis.
mBio. 2025 Jun 11;16(6):e0071425. doi: 10.1128/mbio.00714-25. Epub 2025 May 23.
8
ATP hydrolysis-driven structural transitions within the Rad51 and Dmc1 nucleoprotein filaments.
bioRxiv. 2025 Mar 19:2025.03.19.644215. doi: 10.1101/2025.03.19.644215.
9
Cryo-EM structure of apo-form human DNA polymerase δ elucidates its minimal DNA synthesis activity without PCNA.
J Biol Chem. 2025 Apr;301(4):108342. doi: 10.1016/j.jbc.2025.108342. Epub 2025 Feb 22.
10
Bacterial sensor evolved by decreasing complexity.
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2409881122. doi: 10.1073/pnas.2409881122. Epub 2025 Jan 29.

本文引用的文献

1
[15] Neutron macromolecular crystallography.
Methods Enzymol. 1997;276:218-232. doi: 10.1016/S0076-6879(97)76061-0.
2
X-ray structure of perdeuterated diisopropyl fluorophosphatase (DFPase): perdeuteration of proteins for neutron diffraction.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Apr 1;66(Pt 4):379-85. doi: 10.1107/S1744309110004318. Epub 2010 Mar 26.
3
A joint x-ray and neutron study on amicyanin reveals the role of protein dynamics in electron transfer.
Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6817-22. doi: 10.1073/pnas.0912672107. Epub 2010 Mar 29.
5
Neutron structure of human carbonic anhydrase II: implications for proton transfer.
Biochemistry. 2010 Jan 26;49(3):415-21. doi: 10.1021/bi901995n.
6
On the use of logarithmic scales for analysis of diffraction data.
Acta Crystallogr D Biol Crystallogr. 2009 Dec;65(Pt 12):1283-91. doi: 10.1107/S0907444909039638. Epub 2009 Nov 17.
7
electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation.
Acta Crystallogr D Biol Crystallogr. 2009 Oct;65(Pt 10):1074-80. doi: 10.1107/S0907444909029436. Epub 2009 Sep 16.
8
Automatic multiple-zone rigid-body refinement with a large convergence radius.
J Appl Crystallogr. 2009 Aug 1;42(Pt 4):607-615. doi: 10.1107/S0021889809023528. Epub 2009 Jul 16.
9
Generalized X-ray and neutron crystallographic analysis: more accurate and complete structures for biological macromolecules.
Acta Crystallogr D Biol Crystallogr. 2009 Jun;65(Pt 6):567-73. doi: 10.1107/S0907444909011548. Epub 2009 May 15.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验