Suppr超能文献

细菌趋化性适应的精确性和动力学。

Precision and kinetics of adaptation in bacterial chemotaxis.

机构信息

Department of Physics, Ben-Gurion University of the Negev, Beer Sheva, Israel.

出版信息

Biophys J. 2010 Nov 3;99(9):2766-74. doi: 10.1016/j.bpj.2010.08.051.

Abstract

The chemotaxis network of the bacterium Escherichia coli is perhaps the most studied model for adaptation of a signaling system to persistent stimuli. Although adaptation in this system is generally considered to be precise, there has been little effort to quantify this precision, or to understand how and when precision fails. Using a Förster resonance energy transfer-based reporter of signaling activity, we undertook a systematic study of adaptation kinetics and precision in E. coli cells expressing a single type of chemoreceptor (Tar). Quantifiable loss of precision of adaptation was observed at levels of the attractant MeAsp as low 10 μM, with pronounced differences in both kinetics and precision of adaptation between addition and removal of attractant. Quantitative modeling of the kinetic data suggests that loss of precise adaptation is due to a slowing of receptor methylation as available modification sites become scarce. Moreover, the observed kinetics of adaptation imply large cell-to-cell variation in adaptation rates-potentially providing genetically identical cells with the ability to "hedge their bets" by pursuing distinct chemotactic strategies.

摘要

细菌大肠杆菌的趋化网络可能是研究信号系统适应持续刺激的最成熟模型。尽管这个系统中的适应通常被认为是精确的,但很少有人努力量化这种精度,或者理解精度是如何以及何时失效的。我们使用基于Förster 共振能量转移的信号活性报告器,对表达单一类型趋化受体 (Tar) 的大肠杆菌细胞的适应动力学和精度进行了系统研究。在 10 μM 左右的低浓度的引诱剂 MeAsp 水平下,观察到适应精度可量化的损失,在添加和去除引诱剂时,适应的动力学和精度都有明显的差异。对动力学数据的定量建模表明,适应精度的丧失是由于可用修饰位点变得稀缺时,受体甲基化速度减慢所致。此外,观察到的适应动力学意味着适应率存在很大的细胞间差异——这可能为遗传上相同的细胞提供了“分散风险”的能力,从而采用不同的趋化策略。

相似文献

1
Precision and kinetics of adaptation in bacterial chemotaxis.
Biophys J. 2010 Nov 3;99(9):2766-74. doi: 10.1016/j.bpj.2010.08.051.
2
Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation.
PLoS Comput Biol. 2008 Jan;4(1):e1. doi: 10.1371/journal.pcbi.0040001. Epub 2007 Nov 20.
3
Precise adaptation in bacterial chemotaxis through "assistance neighborhoods".
Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13040-4. doi: 10.1073/pnas.0603101103. Epub 2006 Aug 21.
4
Theoretical results for chemotactic response and drift of E. coli in a weak attractant gradient.
J Theor Biol. 2010 Sep 7;266(1):99-106. doi: 10.1016/j.jtbi.2010.06.012. Epub 2010 Jun 15.
5
Perfect and near-perfect adaptation in a model of bacterial chemotaxis.
Biophys J. 2003 May;84(5):2943-56. doi: 10.1016/S0006-3495(03)70021-6.
6
Chemotactic responses of Escherichia coli to small jumps of photoreleased L-aspartate.
Biophys J. 1999 Mar;76(3):1706-19. doi: 10.1016/S0006-3495(99)77329-7.
7
Relationship between cellular response and behavioral variability in bacterial chemotaxis.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3304-9. doi: 10.1073/pnas.0705463105. Epub 2008 Feb 25.
9
Effects of adaptation in maintaining high sensitivity over a wide range of backgrounds for Escherichia coli chemotaxis.
Biophys J. 2007 Apr 1;92(7):2329-37. doi: 10.1529/biophysj.106.097808. Epub 2007 Jan 5.
10
Chemotactic response and adaptation dynamics in Escherichia coli.
PLoS Comput Biol. 2010 May 20;6(5):e1000784. doi: 10.1371/journal.pcbi.1000784.

引用本文的文献

1
Identification of the governing equation of stimulus-response data for run-and-tumble dynamics.
PLoS Comput Biol. 2025 Aug 5;21(8):e1013287. doi: 10.1371/journal.pcbi.1013287. eCollection 2025 Aug.
2
Signal integration and adaptive sensory diversity tuning in Escherichia coli chemotaxis.
Cell Syst. 2024 Jul 17;15(7):628-638.e8. doi: 10.1016/j.cels.2024.06.003. Epub 2024 Jul 8.
3
Tethered particle motion of the adaptation enzyme CheR in bacterial chemotaxis.
iScience. 2023 Sep 17;26(10):107950. doi: 10.1016/j.isci.2023.107950. eCollection 2023 Oct 20.
4
Steady-state running rate sets the speed and accuracy of accumulation of swimming bacteria.
Biophys J. 2022 Sep 20;121(18):3435-3444. doi: 10.1016/j.bpj.2022.08.012. Epub 2022 Aug 31.
6
Remodels the Chemotaxis Pathway for Swarming.
mBio. 2019 Mar 19;10(2):e00316-19. doi: 10.1128/mBio.00316-19.
8
Paradoxical enhancement of chemoreceptor detection sensitivity by a sensory adaptation enzyme.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):E7583-E7591. doi: 10.1073/pnas.1709075114. Epub 2017 Aug 21.
9
Mechanism of bidirectional thermotaxis in .
Elife. 2017 Aug 3;6:e26607. doi: 10.7554/eLife.26607.

本文引用的文献

2
The chemoreceptor dimer is the unit of conformational coupling and transmembrane signaling.
J Bacteriol. 2010 Mar;192(5):1193-200. doi: 10.1128/JB.01391-09. Epub 2010 Jan 8.
3
Role of translational coupling in robustness of bacterial chemotaxis pathway.
PLoS Biol. 2009 Aug;7(8):e1000171. doi: 10.1371/journal.pbio.1000171. Epub 2009 Aug 18.
4
Dependence of bacterial chemotaxis on gradient shape and adaptation rate.
PLoS Comput Biol. 2008 Dec;4(12):e1000242. doi: 10.1371/journal.pcbi.1000242. Epub 2008 Dec 19.
5
Modeling the chemotactic response of Escherichia coli to time-varying stimuli.
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14855-60. doi: 10.1073/pnas.0807569105. Epub 2008 Sep 23.
6
Variable sizes of Escherichia coli chemoreceptor signaling teams.
Mol Syst Biol. 2008;4:211. doi: 10.1038/msb.2008.49. Epub 2008 Aug 5.
7
Bistability, epigenetics, and bet-hedging in bacteria.
Annu Rev Microbiol. 2008;62:193-210. doi: 10.1146/annurev.micro.62.081307.163002.
8
Location and architecture of the Caulobacter crescentus chemoreceptor array.
Mol Microbiol. 2008 Jul;69(1):30-41. doi: 10.1111/j.1365-2958.2008.06219.x. Epub 2008 Mar 19.
9
Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation.
PLoS Comput Biol. 2008 Jan;4(1):e1. doi: 10.1371/journal.pcbi.0040001. Epub 2007 Nov 20.
10
Bacterial chemoreceptors: high-performance signaling in networked arrays.
Trends Biochem Sci. 2008 Jan;33(1):9-19. doi: 10.1016/j.tibs.2007.09.014. Epub 2007 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验