Suppr超能文献

利用脉冲神经元网络识别部分遮挡和旋转的图像。

Recognition of partially occluded and rotated images with a network of spiking neurons.

作者信息

Shin Joo-Heon, Smith David, Swiercz Waldemar, Staley Kevin, Rickard J Terry, Montero Javier, Kurgan Lukasz A, Cios Krzysztof J

机构信息

Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284 USA.

出版信息

IEEE Trans Neural Netw. 2010 Nov;21(11):1697-709. doi: 10.1109/TNN.2010.2050600.

Abstract

In this paper, we introduce a novel system for recognition of partially occluded and rotated images. The system is based on a hierarchical network of integrate-and-fire spiking neurons with random synaptic connections and a novel organization process. The network generates integrated output sequences that are used for image classification. The proposed network is shown to provide satisfactory predictive performance given that the number of the recognition neurons and synaptic connections are adjusted to the size of the input image. Comparison of synaptic plasticity activity rule (SAPR) and spike timing dependant plasticity rules, which are used to learn connections between the spiking neurons, indicates that the former gives better results and thus the SAPR rule is used. Test results show that the proposed network performs better than a recognition system based on support vector machines.

摘要

在本文中,我们介绍了一种用于识别部分遮挡和旋转图像的新型系统。该系统基于具有随机突触连接的积分发放脉冲神经元的分层网络以及一种新颖的组织过程。该网络生成用于图像分类的综合输出序列。结果表明,在将识别神经元和突触连接的数量调整到输入图像大小时,所提出的网络能提供令人满意的预测性能。比较用于学习脉冲神经元之间连接的突触可塑性活动规则(SAPR)和脉冲时间依赖可塑性规则,结果表明前者效果更好,因此采用了SAPR规则。测试结果表明,所提出的网络比基于支持向量机的识别系统表现更好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验