Suppr超能文献

SWAT:一种用于分类问题的脉冲神经网络训练算法。

SWAT: a spiking neural network training algorithm for classification problems.

作者信息

Wade John J, McDaid Liam J, Santos Jose A, Sayers Heather M

机构信息

Intelligent Systems Research Center, University of Ulster, School of Computing and Intelligent Systems, Derry, Northern Ireland, U.K.

出版信息

IEEE Trans Neural Netw. 2010 Nov;21(11):1817-30. doi: 10.1109/TNN.2010.2074212. Epub 2010 Sep 27.

Abstract

This paper presents a synaptic weight association training (SWAT) algorithm for spiking neural networks (SNNs). SWAT merges the Bienenstock-Cooper-Munro (BCM) learning rule with spike timing dependent plasticity (STDP). The STDP/BCM rule yields a unimodal weight distribution where the height of the plasticity window associated with STDP is modulated causing stability after a period of training. The SNN uses a single training neuron in the training phase where data associated with all classes is passed to this neuron. The rule then maps weights to the classifying output neurons to reflect similarities in the data across the classes. The SNN also includes both excitatory and inhibitory facilitating synapses which create a frequency routing capability allowing the information presented to the network to be routed to different hidden layer neurons. A variable neuron threshold level simulates the refractory period. SWAT is initially benchmarked against the nonlinearly separable Iris and Wisconsin Breast Cancer datasets. Results presented show that the proposed training algorithm exhibits a convergence accuracy of 95.5% and 96.2% for the Iris and Wisconsin training sets, respectively, and 95.3% and 96.7% for the testing sets, noise experiments show that SWAT has a good generalization capability. SWAT is also benchmarked using an isolated digit automatic speech recognition (ASR) system where a subset of the TI46 speech corpus is used. Results show that with SWAT as the classifier, the ASR system provides an accuracy of 98.875% for training and 95.25% for testing.

摘要

本文提出了一种用于脉冲神经网络(SNN)的突触权重关联训练(SWAT)算法。SWAT将比恩斯托克 - 库珀 - 芒罗(BCM)学习规则与脉冲时间依赖可塑性(STDP)相结合。STDP/BCM规则产生单峰权重分布,其中与STDP相关的可塑性窗口的高度受到调制,从而在一段时间的训练后实现稳定性。在训练阶段,SNN使用单个训练神经元,与所有类相关的数据都传递给该神经元。然后,该规则将权重映射到分类输出神经元,以反映跨类数据中的相似性。SNN还包括兴奋性和抑制性促进突触,它们创建了一种频率路由能力,使呈现给网络的信息能够路由到不同的隐藏层神经元。可变的神经元阈值水平模拟了不应期。SWAT最初以非线性可分的鸢尾花和威斯康星乳腺癌数据集为基准进行测试。给出的结果表明,对于鸢尾花训练集和威斯康星训练集,所提出的训练算法分别具有95.5%和96.2%的收敛准确率,对于测试集则分别为95.3%和96.7%,噪声实验表明SWAT具有良好的泛化能力。SWAT还使用一个孤立数字自动语音识别(ASR)系统进行基准测试,其中使用了TI46语音语料库的一个子集。结果表明,以SWAT作为分类器时,ASR系统在训练时的准确率为98.875%,在测试时为95.25%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验