Suppr超能文献

神经元间耦合介质建模及其对神经元同步的影响。

Modeling of inter-neuronal coupling medium and its impact on neuronal synchronization.

作者信息

Iqbal Muhammad, Rehan Muhammad, Hong Keum-Shik

机构信息

Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.

Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.

出版信息

PLoS One. 2017 May 9;12(5):e0176986. doi: 10.1371/journal.pone.0176986. eCollection 2017.

Abstract

In this paper, modeling of the coupling medium between two neurons, the effects of the model parameters on the synchronization of those neurons, and compensation of coupling strength deficiency in synchronization are studied. Our study exploits the inter-neuronal coupling medium and investigates its intrinsic properties in order to get insight into neuronal-information transmittance and, there from, brain-information processing. A novel electrical model of the coupling medium that represents a well-known RLC circuit attributable to the coupling medium's intrinsic resistive, inductive, and capacitive properties is derived. Surprisingly, the integration of such properties reveals the existence of a natural three-term control strategy, referred to in the literature as the proportional integral derivative (PID) controller, which can be responsible for synchronization between two neurons. Consequently, brain-information processing can rely on a large number of PID controllers based on the coupling medium properties responsible for the coherent behavior of neurons in a neural network. Herein, the effects of the coupling model (or natural PID controller) parameters are studied and, further, a supervisory mechanism is proposed that follows a learning and adaptation policy based on the particle swarm optimization algorithm for compensation of the coupling strength deficiency.

摘要

本文研究了两个神经元之间耦合介质的建模、模型参数对这些神经元同步的影响以及同步中耦合强度不足的补偿。我们的研究利用神经元间耦合介质并研究其内在特性,以便深入了解神经元信息传递,进而了解大脑信息处理。推导了一种耦合介质的新型电学模型,该模型基于耦合介质的固有电阻、电感和电容特性,代表了一个著名的RLC电路。令人惊讶的是,这些特性的整合揭示了一种自然的三项控制策略的存在,文献中称为比例积分微分(PID)控制器,它可以负责两个神经元之间的同步。因此,大脑信息处理可以基于耦合介质特性依赖大量的PID控制器,这些特性负责神经网络中神经元的相干行为。在此,研究了耦合模型(或自然PID控制器)参数的影响,此外,还提出了一种监督机制,该机制遵循基于粒子群优化算法的学习和自适应策略,以补偿耦合强度不足。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49ac/5423630/b10ef432a4ea/pone.0176986.g001.jpg

相似文献

1
Modeling of inter-neuronal coupling medium and its impact on neuronal synchronization.
PLoS One. 2017 May 9;12(5):e0176986. doi: 10.1371/journal.pone.0176986. eCollection 2017.
3
A PID controller for synchronization between master-slave neurons in fractional-order of neocortical network model.
J Theor Biol. 2023 Jan 7;556:111311. doi: 10.1016/j.jtbi.2022.111311. Epub 2022 Oct 17.
4
Synchronization regulation in a model of coupled neural masses.
Biol Cybern. 2013 Apr;107(2):131-40. doi: 10.1007/s00422-012-0541-3. Epub 2012 Dec 18.
5
Phase synchronization motion and neural coding in dynamic transmission of neural information.
IEEE Trans Neural Netw. 2011 Jul;22(7):1097-106. doi: 10.1109/TNN.2011.2119377. Epub 2011 Jun 7.
6
Controlling synchronization in a neuron-level population model.
Int J Neural Syst. 2007 Apr;17(2):123-38. doi: 10.1142/S0129065707000993.
8
Electrical coupling can prevent expression of adult-like properties in an embryonic neural circuit.
J Neurophysiol. 2002 Jan;87(1):538-47. doi: 10.1152/jn.00372.2001.
10
Adaptive coupling of inferior olive neurons in cerebellar learning.
Neural Netw. 2013 Nov;47:42-50. doi: 10.1016/j.neunet.2012.12.006. Epub 2012 Dec 28.

引用本文的文献

1
Control of noise-induced coherent oscillations in three-neuron motifs.
Cogn Neurodyn. 2022 Aug;16(4):941-960. doi: 10.1007/s11571-021-09770-2. Epub 2021 Dec 23.

本文引用的文献

3
Generalized cable theory for neurons in complex and heterogeneous media.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022709. doi: 10.1103/PhysRevE.88.022709. Epub 2013 Aug 13.
4
Robust synchronization of delayed chaotic FitzHugh-Nagumo neurons under external electrical stimulation.
Comput Math Methods Med. 2012;2012:230980. doi: 10.1155/2012/230980. Epub 2012 Nov 1.
5
Detection of event-related hemodynamic response to neuroactivation by dynamic modeling of brain activity.
Neuroimage. 2012 Oct 15;63(1):553-68. doi: 10.1016/j.neuroimage.2012.07.006. Epub 2012 Jul 14.
6
Recognition of partially occluded and rotated images with a network of spiking neurons.
IEEE Trans Neural Netw. 2010 Nov;21(11):1697-709. doi: 10.1109/TNN.2010.2050600.
8
Speaker-listener neural coupling underlies successful communication.
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14425-30. doi: 10.1073/pnas.1008662107. Epub 2010 Jul 26.
9
Brain stimulation for surgical epilepsy.
Epilepsy Res. 2010 Mar;89(1):154-61. doi: 10.1016/j.eplepsyres.2009.08.017. Epub 2009 Sep 18.
10
Neuronal synchrony: peculiarity and generality.
Chaos. 2008 Sep;18(3):037119. doi: 10.1063/1.2949925.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验