School of Chemistry, University of Nottingham, University Park NG7 2RD, United Kingdom.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20178-83. doi: 10.1073/pnas.1001249107. Epub 2010 Nov 3.
Fast time-resolved infrared spectroscopic measurements have allowed precise determination of the rates of activation of alkanes by Cp'Rh(CO) (Cp(') = η(5)-C(5)H(5) or η(5)-C(5)Me(5)). We have monitored the kinetics of C─H activation in solution at room temperature and determined how the change in rate of oxidative cleavage varies from methane to decane. The lifetime of CpRh(CO)(alkane) shows a nearly linear behavior with respect to the length of the alkane chain, whereas the related CpRh(CO)(alkane) has clear oscillatory behavior upon changing the alkane. Coupled cluster and density functional theory calculations on these complexes, transition states, and intermediates provide the insight into the mechanism and barriers in order to develop a kinetic simulation of the experimental results. The observed behavior is a subtle interplay between the rates of activation and migration. Unexpectedly, the calculations predict that the most rapid process in these Cp'Rh(CO)(alkane) systems is the 1,3-migration along the alkane chain. The linear behavior in the observed lifetime of CpRh(CO)(alkane) results from a mechanism in which the next most rapid process is the activation of primary C─H bonds (─CH(3) groups), while the third key step in this system is 1,2-migration with a slightly slower rate. The oscillatory behavior in the lifetime of CpRh(CO)(alkane) with respect to the alkane's chain length follows from subtle interplay between more rapid migrations and less rapid primary C─H activation, with respect to CpRh(CO)(alkane), especially when the CH(3) group is near a gauche turn. This interplay results in the activation being controlled by the percentage of alkane conformers.
快速时间分辨红外光谱测量允许精确确定 Cp'Rh(CO)(Cp(') = η(5)-C(5)H(5) 或 η(5)-C(5)Me(5)) 烷烃的活化速率。我们在室温下监测了溶液中 C─H 活化的动力学,并确定了氧化裂解速率如何从甲烷变化到癸烷。CpRh(CO)(烷烃)的寿命与烷烃链的长度呈几乎线性关系,而相关的 CpRh(CO)(烷烃)在改变烷烃时表现出明显的振荡行为。对这些配合物、过渡态和中间体进行耦合簇和密度泛函理论计算,为理解机制和障碍提供了见解,以便对实验结果进行动力学模拟。观察到的行为是活化和迁移速率之间的微妙相互作用。出乎意料的是,计算预测在这些 Cp'Rh(CO)(烷烃)体系中最快的过程是沿着烷烃链的 1,3-迁移。CpRh(CO)(烷烃)观察到的寿命中的线性行为源于一种机制,其中下一个最快的过程是初级 C─H 键(─CH(3) 基团)的活化,而在这个体系中第三个关键步骤是 1,2-迁移,速度稍慢。CpRh(CO)(烷烃)的寿命中与烷烃链长有关的振荡行为源自更快速的迁移和相对较慢的初级 C─H 活化之间的微妙相互作用,相对于 CpRh(CO)(烷烃),尤其是当 CH(3) 基团接近 gauche 转弯时。这种相互作用导致活化受烷烃构象百分比的控制。