Banerjee Ambar, Jay Raphael M, Leitner Torsten, Wang Ru-Pan, Harich Jessica, Stefanuik Robert, Coates Michael R, Beale Emma V, Kabanova Victoria, Kahraman Abdullah, Wach Anna, Ozerov Dmitry, Arrell Christopher, Milne Christopher, Johnson Philip J M, Cirelli Claudio, Bacellar Camila, Huse Nils, Odelius Michael, Wernet Philippe
Department of Physics and Astronomy, Uppsala University 751 20 Uppsala Sweden
Center for Free-Electron Laser Science, Department of Physics, University of Hamburg 22761 Hamburg Germany.
Chem Sci. 2024 Jan 9;15(7):2398-2409. doi: 10.1039/d3sc04388f. eCollection 2024 Feb 14.
Photochemically prepared transition-metal complexes are known to be effective at cleaving the strong C-H bonds of organic molecules in room temperature solutions. There is also ample theoretical evidence that the two-way, metal to ligand (MLCT) and ligand to metal (LMCT), charge-transfer between an incoming alkane C-H group and the transition metal is the decisive interaction in the C-H activation reaction. What is missing, however, are experimental methods to directly probe these interactions in order to reveal what determines reactivity of intermediates and the rate of the reaction. Here, using quantum chemical simulations we predict and propose future time-resolved valence-to-core resonant inelastic X-ray scattering (VtC-RIXS) experiments at the transition metal L-edge as a method to provide a full account of the evolution of metal-alkane interactions during transition-metal mediated C-H activation reactions. For the model system cyclopentadienyl rhodium dicarbonyl (CpRh(CO)), we demonstrate, by simulating the VtC-RIXS signatures of key intermediates in the C-H activation pathway, how the Rh-centered valence-excited states accessible through VtC-RIXS directly reflect changes in donation and back-donation between the alkane C-H group and the transition metal as the reaction proceeds those intermediates. We benchmark and validate our quantum chemical simulations against experimental steady-state measurements of CpRh(CO) and Rh(acac)(CO) (where acac is acetylacetonate). Our study constitutes the first step towards establishing VtC-RIXS as a new experimental observable for probing reactivity of C-H activation reactions. More generally, the study further motivates the use of time-resolved VtC-RIXS to follow the valence electronic structure evolution along photochemical, photoinitiated and photocatalytic reactions with transition metal complexes.
已知光化学制备的过渡金属配合物在室温溶液中能够有效裂解有机分子中牢固的C-H键。也有大量理论证据表明,在进入的烷烃C-H基团与过渡金属之间的双向、从金属到配体(MLCT)以及从配体到金属(LMCT)的电荷转移是C-H活化反应中的决定性相互作用。然而,缺少的是直接探测这些相互作用的实验方法,以便揭示决定中间体反应活性和反应速率的因素。在这里,我们通过量子化学模拟预测并提出,未来在过渡金属L边进行时间分辨价到芯共振非弹性X射线散射(VtC-RIXS)实验,作为一种全面描述过渡金属介导的C-H活化反应过程中金属-烷烃相互作用演变的方法。对于模型体系环戊二烯基二羰基铑(CpRh(CO)),我们通过模拟C-H活化途径中关键中间体的VtC-RIXS特征,展示了通过VtC-RIXS可获得的以铑为中心的价激发态如何直接反映随着反应进行,烷烃C-H基团与过渡金属之间的给予和反馈给予的变化 即那些中间体。我们根据CpRh(CO)和Rh(acac)(CO)(其中acac是乙酰丙酮)的实验稳态测量结果,对我们的量子化学模拟进行了基准测试和验证。我们的研究是将VtC-RIXS确立为探测C-H活化反应反应活性的新实验可观测量的第一步。更一般地说,该研究进一步推动了使用时间分辨VtC-RIXS来跟踪与过渡金属配合物相关的光化学、光引发和光催化反应中的价电子结构演变。