Department of Orthopaedic Surgery, Stanford University, Palo Alto, CA 94063, USA.
Am J Sports Med. 2011 Feb;39(2):266-71. doi: 10.1177/0363546510387517. Epub 2010 Nov 4.
Clinical studies claim that platelet-rich plasma (PRP) shortens recovery times because of its high concentration of growth factors that may enhance the tissue repair process. Most of these studies obtained PRP using different separation systems, and few analyzed the content of the PRP used as treatment.
This study characterized the composition of single-donor PRP produced by 3 commercially available PRP separation systems.
Controlled laboratory study.
Five healthy humans donated 100 mL of blood, which was processed to produce PRP using 3 PRP concentration systems (MTF Cascade, Arteriocyte Magellan, Biomet GPS III). Platelet, white blood cell (WBC), red blood cell, and fibrinogen concentrations were analyzed by automated systems in a clinical laboratory, whereas ELISA determined the concentrations of platelet-derived growth factor αβ and ββ (PDGF-αβ, PDGF-ββ), transforming growth factor β1 (TGF-β1), and vascular endothelial growth factor (VEGF).
There was no significant difference in mean PRP platelet, red blood cell, active TGF-β1, or fibrinogen concentrations among PRP separation systems. There was a significant difference in platelet capture efficiency. The highest platelet capture efficiency was obtained with Cascade, which was comparable with Magellan but significantly higher than GPS III. There was a significant difference among all systems in the concentrations of WBC, PDGF-αβ, PDGF-ββ, and VEGF. The Cascade system concentrated leukocyte-poor PRP, compared with leukocyte-rich PRP from the GPS III and Magellan systems.
The GPS III and Magellan concentrate leukocyte-rich PRP, which results in increased concentrations of WBCs, PDGF-αβ, PDGF-ββ, and VEGF as compared with the leukocyte-poor PRP from Cascade. Overall, there was no significant difference among systems in the platelet concentration, red blood cell, active TGF-β1, or fibrinogen levels.
Products from commercially available PRP separation systems produce differing concentrations of growth factors and WBCs. Further research is necessary to determine the clinical relevance of these findings.
临床研究声称,富含血小板的血浆(PRP)因其高浓度的生长因子而缩短了恢复时间,这些生长因子可能会增强组织修复过程。这些研究大多使用不同的分离系统获得 PRP,只有少数分析了用作治疗的 PRP 的含量。
本研究对 3 种市售 PRP 分离系统生产的单供体 PRP 的组成进行了表征。
对照实验室研究。
5 名健康人捐献 100mL 血液,使用 3 种 PRP 浓度系统(MTF Cascade、Arteriocyte Magellan、Biomet GPS III)处理以产生 PRP。血小板、白细胞(WBC)、红细胞和纤维蛋白原浓度由临床实验室的自动系统分析,而 ELISA 则测定血小板衍生生长因子 αβ 和 ββ(PDGF-αβ、PDGF-ββ)、转化生长因子β1(TGF-β1)和血管内皮生长因子(VEGF)的浓度。
PRP 分离系统之间的 PRP 血小板、红细胞、活性 TGF-β1 或纤维蛋白原浓度均无显著差异。血小板捕获效率存在显著差异。Cascade 的血小板捕获效率最高,与 Magellan 相当,但明显高于 GPS III。所有系统之间的 WBC、PDGF-αβ、PDGF-ββ 和 VEGF 浓度均存在显著差异。Cascade 系统浓缩了白细胞较少的 PRP,与 GPS III 和 Magellan 系统的白细胞丰富的 PRP 相比。
GPS III 和 Magellan 浓缩了富含白细胞的 PRP,与 Cascade 的白细胞较少的 PRP 相比,白细胞、PDGF-αβ、PDGF-ββ 和 VEGF 的浓度增加。总体而言,各系统之间的血小板浓度、红细胞、活性 TGF-β1 或纤维蛋白原水平无显著差异。
市售 PRP 分离系统的产品产生不同浓度的生长因子和白细胞。需要进一步研究以确定这些发现的临床意义。