Suppr超能文献

一种用于高维蛋白质基因组数据生存中介分析的多组学框架。

A Multi-Omics Framework for Survival Mediation Analysis of High-Dimensional Proteogenomic Data.

作者信息

Ahn Seungjun, Fu Weijia, van Gerwen Maaike, Liu Lei, Li Zhigang

机构信息

Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A.

Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A.

出版信息

ArXiv. 2025 Mar 11:arXiv:2503.08606v1.

Abstract

MOTIVATION

Survival analysis plays a crucial role in understanding time-to-event (survival) outcomes such as disease progression. Despite recent advancements in causal mediation frameworks for survival analysis, existing methods are typically based on Cox regression and primarily focus on a single exposure or individual omics layers, often overlooking multi-omics interplay. This limitation hinders the full potential of integrated biological insights.

RESULTS

In this paper, we propose SMAHP, a novel method for survival mediation analysis that simultaneously handles high-dimensional exposures and mediators, integrates multi-omics data, and offers a robust statistical framework for identifying causal pathways on survival outcomes. This is one of the first attempts to introduce the accelerated failure time (AFT) model within a multi-omics causal mediation framework for survival outcomes. Through simulations across multiple scenarios, we demonstrate that SMAHP achieves high statistical power, while effectively controlling false discovery rate (FDR), compared with two other approaches. We further apply SMAHP to the largest head-and-neck carcinoma proteogenomic data, detecting a gene mediated by a protein that influences survival time.

AVAILABILITY AND IMPLEMENTATION

R package is freely available on CRAN repository (https://CRAN.R-project.org/package=SMAHP) and published under General Public License version 3.

摘要

动机

生存分析在理解诸如疾病进展等事件发生时间(生存)结局方面起着关键作用。尽管生存分析的因果中介框架最近取得了进展,但现有方法通常基于Cox回归,主要关注单一暴露或单个组学层面,常常忽略多组学之间的相互作用。这种局限性阻碍了整合生物学见解的全部潜力。

结果

在本文中,我们提出了SMAHP,这是一种用于生存中介分析的新方法,它能同时处理高维暴露和中介变量,整合多组学数据,并为识别生存结局的因果途径提供一个强大的统计框架。这是在多组学生存结局因果中介框架内引入加速失效时间(AFT)模型的首批尝试之一。通过在多种场景下的模拟,我们证明与其他两种方法相比,SMAHP具有较高的统计功效,同时能有效控制错误发现率(FDR)。我们进一步将SMAHP应用于最大的头颈癌蛋白质基因组学数据,检测到一种由影响生存时间的蛋白质介导的基因。

可用性与实现方式

R包可在CRAN存储库(https://CRAN.R-project.org/package=SMAHP)上免费获取,并根据通用公共许可证第3版发布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/450b/11952585/a50b4194b0c1/nihpp-2503.08606v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验