Suppr超能文献

提高用于估计具有不完整数据的总体均值的双重稳健估计量的效率和稳健性。

Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data.

作者信息

Cao Weihua, Tsiatis Anastasios A, Davidian Marie

机构信息

Department of Statistics , North Carolina State University , Raleigh, North Carolina 27695-8203 , U.S.A.

出版信息

Biometrika. 2009 Sep;96(3):723-734. doi: 10.1093/biomet/asp033. Epub 2009 Aug 7.

Abstract

Considerable recent interest has focused on doubly robust estimators for a population mean response in the presence of incomplete data, which involve models for both the propensity score and the regression of outcome on covariates. The usual doubly robust estimator may yield severely biased inferences if neither of these models is correctly specified and can exhibit nonnegligible bias if the estimated propensity score is close to zero for some observations. We propose alternative doubly robust estimators that achieve comparable or improved performance relative to existing methods, even with some estimated propensity scores close to zero.

摘要

最近,相当多的关注集中在存在不完整数据时总体平均响应的双稳健估计量上,这涉及倾向得分模型和结果对协变量的回归模型。如果这两个模型都未正确设定,通常的双稳健估计量可能会产生严重有偏的推断,并且如果某些观测值的估计倾向得分接近零,可能会表现出不可忽略的偏差。我们提出了替代的双稳健估计量,即使某些估计倾向得分接近零,相对于现有方法也能实现相当或更好的性能。

相似文献

2
Stratified doubly robust estimators for the average causal effect.平均因果效应的分层双稳健估计量。
Biometrics. 2014 Jun;70(2):270-7. doi: 10.1111/biom.12157. Epub 2014 Feb 26.
4
Data-Adaptive Bias-Reduced Doubly Robust Estimation.数据自适应偏差减少的双重稳健估计
Int J Biostat. 2016 May 1;12(1):253-82. doi: 10.1515/ijb-2015-0029.

引用本文的文献

6
Matching on Generalized Propensity Scores with Continuous Exposures.基于广义倾向得分匹配连续暴露因素
J Am Stat Assoc. 2024;119(545):757-772. doi: 10.1080/01621459.2022.2144737. Epub 2022 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验