Suppr超能文献

提高用于估计具有不完整数据的总体均值的双重稳健估计量的效率和稳健性。

Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data.

作者信息

Cao Weihua, Tsiatis Anastasios A, Davidian Marie

机构信息

Department of Statistics , North Carolina State University , Raleigh, North Carolina 27695-8203 , U.S.A.

出版信息

Biometrika. 2009 Sep;96(3):723-734. doi: 10.1093/biomet/asp033. Epub 2009 Aug 7.

Abstract

Considerable recent interest has focused on doubly robust estimators for a population mean response in the presence of incomplete data, which involve models for both the propensity score and the regression of outcome on covariates. The usual doubly robust estimator may yield severely biased inferences if neither of these models is correctly specified and can exhibit nonnegligible bias if the estimated propensity score is close to zero for some observations. We propose alternative doubly robust estimators that achieve comparable or improved performance relative to existing methods, even with some estimated propensity scores close to zero.

摘要

最近,相当多的关注集中在存在不完整数据时总体平均响应的双稳健估计量上,这涉及倾向得分模型和结果对协变量的回归模型。如果这两个模型都未正确设定,通常的双稳健估计量可能会产生严重有偏的推断,并且如果某些观测值的估计倾向得分接近零,可能会表现出不可忽略的偏差。我们提出了替代的双稳健估计量,即使某些估计倾向得分接近零,相对于现有方法也能实现相当或更好的性能。

相似文献

1
Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data.
Biometrika. 2009 Sep;96(3):723-734. doi: 10.1093/biomet/asp033. Epub 2009 Aug 7.
2
Stratified doubly robust estimators for the average causal effect.
Biometrics. 2014 Jun;70(2):270-7. doi: 10.1111/biom.12157. Epub 2014 Feb 26.
3
Model misspecification and robustness in causal inference: comparing matching with doubly robust estimation.
Stat Med. 2012 Jul 10;31(15):1572-81. doi: 10.1002/sim.4496. Epub 2012 Feb 23.
4
Data-Adaptive Bias-Reduced Doubly Robust Estimation.
Int J Biostat. 2016 May 1;12(1):253-82. doi: 10.1515/ijb-2015-0029.
5
Improved doubly robust estimation in learning optimal individualized treatment rules.
J Am Stat Assoc. 2021;116(533):283-294. doi: 10.1080/01621459.2020.1725522. Epub 2020 Sep 8.
6
Improving causal inference with a doubly robust estimator that combines propensity score stratification and weighting.
J Eval Clin Pract. 2017 Aug;23(4):697-702. doi: 10.1111/jep.12714. Epub 2017 Jan 24.
7
Machine learning outcome regression improves doubly robust estimation of average causal effects.
Pharmacoepidemiol Drug Saf. 2020 Sep;29(9):1120-1133. doi: 10.1002/pds.5074. Epub 2020 Jul 27.
8
9
Improved doubly robust estimation when data are monotonely coarsened, with application to longitudinal studies with dropout.
Biometrics. 2011 Jun;67(2):536-45. doi: 10.1111/j.1541-0420.2010.01476.x. Epub 2010 Aug 19.
10
Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study.
Int J Biostat. 2019 Feb 26;15(2):/j/ijb.2019.15.issue-2/ijb-2017-0054/ijb-2017-0054.xml. doi: 10.1515/ijb-2017-0054.

引用本文的文献

1
Enhanced doubly robust estimation with concave link functions for estimands in clinical trials.
J Nonparametr Stat. 2024 Mar 12. doi: 10.1080/10485252.2024.2328078.
2
Nonparametric identification is not enough, but randomized controlled trials are.
Obs Stud. 2025 Apr 11;11(1):3-16. doi: 10.1353/obs.2025.a956837. eCollection 2025.
3
Improving randomized controlled trial analysis via data-adaptive borrowing.
Biometrika. 2024 Dec 17;112(2):asae069. doi: 10.1093/biomet/asae069. eCollection 2025.
4
A semiparametric multiply robust multiple imputation method for causal inference.
Metrika. 2023 Jul;86(5):517-542. doi: 10.1007/s00184-022-00883-0. Epub 2022 Sep 12.
5
Mediation analysis using incomplete information from publicly available data sources.
Stat Med. 2024 Jun 30;43(14):2695-2712. doi: 10.1002/sim.10076. Epub 2024 Apr 12.
6
Matching on Generalized Propensity Scores with Continuous Exposures.
J Am Stat Assoc. 2024;119(545):757-772. doi: 10.1080/01621459.2022.2144737. Epub 2022 Dec 12.
7
An improved multiply robust estimator for the average treatment effect.
BMC Med Res Methodol. 2023 Oct 11;23(1):231. doi: 10.1186/s12874-023-02056-7.
8
A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications.
Int Stat Rev. 2021 Dec;89(3):605-634. doi: 10.1111/insr.12452. Epub 2021 May 31.
10
Model misspecification and bias for inverse probability weighting estimators of average causal effects.
Biom J. 2023 Feb;65(2):e2100118. doi: 10.1002/bimj.202100118. Epub 2022 Aug 31.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验