Fillard J P, Castagne M, Prioleau C
Appl Opt. 1995 Jul 1;34(19):3737-42. doi: 10.1364/AO.34.003737.
Evanescent wave conversion by transparent dielectric nanoprobes has long been achieved in photon scanning tunneling microscopy experiments. Nevertheless, the exact mechanism (i.e., resolution limit) of this optical interaction is not satisfactorily explained theoretically nor evidenced experimentally. We study the ability of doped silicon atomic force microscopy tips to capture infrared near-field waves standing at the flat surface of a semiconductor (semi-insulating InP) material. It is shown that, unlike silicon nitride tips previously studied, the transmitted intensity of these silicon tips does not obey the classical frustrated total internal reflection model but a more complex dependence that involves a resonant tunneling transfer. An explanation is proposed that follows the theoretical predictions for the electromagnetic coupling between subwavelength objects.
长期以来,在光子扫描隧道显微镜实验中已实现通过透明介电纳米探针进行倏逝波转换。然而,这种光学相互作用的确切机制(即分辨率极限)在理论上未得到令人满意的解释,在实验中也未得到证实。我们研究了掺杂硅原子力显微镜探针捕获驻留在半导体(半绝缘磷化铟)材料平面表面的红外近场波的能力。结果表明,与先前研究的氮化硅探针不同,这些硅探针的透射强度并不遵循经典的受抑全内反射模型,而是遵循一种涉及共振隧穿转移的更复杂的依赖关系。我们提出了一种解释,该解释符合亚波长物体之间电磁耦合的理论预测。