Centre de RMN à Très Hauts Champs, UMR 5280 CNRS/Ecole Normale Supérieure de Lyon/UCB, Lyon 1, 69100 Villeurbanne, France.
J Am Chem Soc. 2012 Oct 17;134(41):17178-85. doi: 10.1021/ja306876u. Epub 2012 Oct 4.
Substituted lithium transition-metal (TM) phosphate LiFe(x)Mn(1-x)PO(4) materials with olivine-type structures are among the most promising next generation lithium ion battery cathodes. However, a complete atomic-level description of the structure of such phases is not yet available. Here, a combined experimental and theoretical approach to the detailed assignment of the (31)P NMR spectra of the LiFe(x)Mn(1-x)PO(4) (x = 0, 0.25, 0.5, 0.75, 1) pure and mixed TM phosphates is developed and applied. Key to the present work is the development of a new NMR experiment enabling the characterization of complex paramagnetic materials via the complete separation of the individual isotropic chemical shifts, along with solid-state hybrid DFT calculations providing the separate hyperfine contributions of all distinct Mn-O-P and Fe-O-P bond pathways. The NMR experiment, referred to as aMAT, makes use of short high-powered adiabatic pulses (SHAPs), which can achieve 100% inversion over a range of isotropic shifts on the order of 1 MHz and with anisotropies greater than 100 kHz. In addition to complete spectral assignments of the mixed phases, the present study provides a detailed insight into the differences in electronic structure driving the variations in hyperfine parameters across the range of materials. A simple model delimiting the effects of distortions due to Mn/Fe substitution is also proposed and applied. The combined approach has clear future applications to TM-bearing battery cathode phases in particular and for the understanding of complex paramagnetic phases in general.
具有橄榄石结构的取代锂过渡金属(TM)磷酸盐 LiFe(x)Mn(1-x)PO(4) 材料是最有前途的下一代锂离子电池正极材料之一。然而,这些相的结构还没有完整的原子水平描述。在这里,我们开发并应用了一种结合实验和理论的方法,对 LiFe(x)Mn(1-x)PO(4)(x = 0、0.25、0.5、0.75、1)纯相和混合 TM 磷酸盐的(31)P NMR 谱进行详细的归属。本工作的关键是开发了一种新的 NMR 实验,通过完全分离各向同性化学位移,可以对复杂的顺磁材料进行特征描述,同时固态混合 DFT 计算可以提供所有不同的 Mn-O-P 和 Fe-O-P 键途径的单独超精细贡献。这种被称为 aMAT 的 NMR 实验利用了短时间强功率绝热脉冲(SHAPs),可以在 1 MHz 量级的各向同性位移范围内实现 100%反转,并且各向异性大于 100 kHz。除了对混合相的完全光谱归属外,本研究还深入了解了电子结构差异对整个材料系列中超精细参数变化的影响。还提出并应用了一个简单的模型来限制由于 Mn/Fe 取代引起的畸变的影响。这种综合方法特别适用于 TM 基电池正极相,也适用于理解一般的复杂顺磁相。