Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan.
Chem Res Toxicol. 2010 Dec 20;23(12):1921-35. doi: 10.1021/tx100286d.
Structure-function relationships for the inhibition of human cytochrome P450s (P450s) 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 flavonoid derivatives were studied. Thirty-two of the 33 flavonoids tested produced reverse type I binding spectra with P450 1B1, and the potencies of binding were correlated with the abilities to inhibit 7-ethoxyresorufin O-deethylation activity. The presence of a hydroxyl group in flavones, for example, 3-, 5-, and 7-monohydroxy- and 5,7-dihydroxyflavone, decreased the 50% inhibition concentration (IC50) of P450 1B1 from 0.6 μM to 0.09, 0.21, 0.25, and 0.27 μM, respectively, and 3,5,7-trihydroxyflavone (galangin) was the most potent, with an IC50 of 0.003 μM. The introduction of a 4'-methoxy- or 3',4'-dimethoxy group into 5,7-dihydroxyflavone yielded other active inhibitors of P450 1B1 with IC50 values of 0.014 and 0.019 μM, respectively. The above hydroxyl and/or methoxy groups in flavone molecules also increased the inhibition activity with P450 1A1 but not always toward P450 1A2, where 3-, 5-, or 7-hydroxyflavone and 4'-methoxy-5,7-dihydroxyflavone were less inhibitory than flavone itself. P450 2C9 was more inhibited by 7-hydroxy-, 5,7-dihydroxy-, and 3,5,7-trihydroxyflavones than by flavone but was weakly inhibited by 3- and 5-hydroxyflavone. Flavone and several other flavonoids produced type I binding spectra with P450 3A4, but such binding was not always related to the inhibitiory activities toward P450 3A4. These results indicate that there are different mechanisms of inhibition for P450s 1A1, 1A2, 1B1, 2C9, and 3A4 by various flavonoid derivatives and that the number and position of hydroxyl and/or methoxy groups highly influence the inhibitory actions of flavonoids toward these enzymes. Molecular docking studies suggest that there are different mechanisms involved in the interaction of various flavonoids with the active site of P450s, thus causing differences in inhibition of these P450 catalytic activities by flavonoids.
研究了 33 种黄酮类衍生物对人细胞色素 P450s(P450s)1A1、1A2、1B1、2C9 和 3A4 的抑制作用的结构-功能关系。在所测试的 33 种黄酮类化合物中,有 32 种与 P450 1B1 产生了反向 I 型结合光谱,结合的效力与抑制 7-乙氧基resorufin O-脱乙基化活性的能力相关。例如,在黄酮类化合物中引入一个羟基,例如 3-、5-和 7-单羟基-和 5,7-二羟基黄酮,使 P450 1B1 的 50%抑制浓度(IC50)从 0.6 μM 降低至 0.09、0.21、0.25 和 0.27 μM,而 3,5,7-三羟基黄酮(高良姜素)的抑制能力最强,IC50 为 0.003 μM。在 5,7-二羟基黄酮中引入 4'-甲氧基或 3',4'-二甲氧基,得到了其他具有活性的 P450 1B1 抑制剂,IC50 值分别为 0.014 和 0.019 μM。黄酮类分子中的上述羟基和/或甲氧基也增加了对 P450 1A1 的抑制活性,但并不总是对 P450 1A2 如此,其中 3-、5-或 7-羟基黄酮和 4'-甲氧基-5,7-二羟基黄酮的抑制活性低于黄酮本身。P450 2C9 比黄酮更能被 7-羟基、5,7-二羟基和 3,5,7-三羟基黄酮抑制,但 3-和 5-羟基黄酮的抑制作用较弱。黄酮和其他几种黄酮类化合物与 P450 3A4 产生了 I 型结合光谱,但这种结合并不总是与对 P450 3A4 的抑制活性相关。这些结果表明,各种黄酮类衍生物对 P450s 1A1、1A2、1B1、2C9 和 3A4 的抑制作用存在不同的机制,并且羟基和/或甲氧基的数量和位置高度影响黄酮类化合物对这些酶的抑制作用。分子对接研究表明,各种黄酮类化合物与 P450 活性位点的相互作用存在不同的机制,从而导致黄酮类化合物对这些 P450 催化活性的抑制作用存在差异。