Meyer N D, Bayly W M, Sides R H, Wardrop K J, Slinker B K
College of Veterinary Medicine, Washington State University, Washington, USA.
Equine Vet J Suppl. 2010 Nov(38):185-90. doi: 10.1111/j.2042-3306.2010.00189.x.
Prolonged equine exercise can cause hypochloraemic alkalosis and hypokalaemia secondary to the loss of hypertonic sweat. Movement of ions in and out of erythrocytes during exercise may help regulate acid-base balance and changes in plasma ion concentrations. The extent to which this happens during prolonged equine exercise has not been reported.
To measure changes in blood gases and major plasma and intraerythrocytic (iRBC) ion concentrations of horses undergoing prolonged submaximal exercise.
Six horses were trotted at ∼ 30% VO2max on a treadmill for 105 min. Arterial ((a)) and mixed venous ((v)) blood samples were collected every 15 min, and pre- and post exercise. Blood gases and plasma (pl) concentrations of sodium, potassium, chloride and protein were measured and their iRBC concentrations calculated and compared (P < 0.05).
P(a)CO(2) decreased in all horses. pl[Cl(-)]v decreased and [HCO(3)(-)]v increased. Due to the exhalation of CO(2) and chloride shifting, [HCO(3)(-)]a<[HCO(3)(-)]v, pl[Cl(-)]a>pl[Cl(-)]v)and iRBC[Cl(-)]a<iRBC[Cl(-)]v. pl[K(+)]a and plK(+) both initially increased then decreased and horses were hypokalaemic post exercise. Both iRBCCl(-) and iRBCCl(-) decreased over the course of exercise but there was no change in the arteriovenous difference between them. There was no arteriovenous difference in pl[K(+)]. iRBC[K (+)]a>iRBC[K(+)]v. Conversely, iRBC[Na(+)]a<iRBC[Na(+)]v). pl[Na(+)]a<pl[Na(+)]v and [TP]a<[TP]v.
Significant arteriovenous differences in iRBC and plasma concentrations of chloride, potassium and sodium reflect the role that movement of ions across erythrocyte cell membranes play in regulating acid-base balance and plasma concentrations of these ions. Exhalation of CO(2) has a major influence on this ion flux.
长时间的马匹运动可导致高渗性汗液流失继发低氯性碱中毒和低钾血症。运动过程中离子进出红细胞的过程可能有助于调节酸碱平衡以及血浆离子浓度的变化。在长时间的马匹运动过程中这种情况发生的程度尚未见报道。
测定进行长时间次最大运动的马匹的血气以及主要血浆和红细胞内(iRBC)离子浓度的变化。
6匹马在跑步机上以约30%最大摄氧量的速度小跑105分钟。在运动前、运动期间每15分钟以及运动后采集动脉血((a))和混合静脉血((v))样本。测定血气以及血浆中钠、钾、氯和蛋白质的浓度,并计算其红细胞内浓度并进行比较(P < 0.05)。
所有马匹的动脉血二氧化碳分压(P(a)CO(2))均降低。混合静脉血中血浆氯离子浓度(pl[Cl(-)]v)降低,碳酸氢根离子浓度([HCO(3)(-)]v)升高。由于二氧化碳呼出和氯离子转移,动脉血中[HCO(3)(-)]a < [HCO(3)(-)]v,pl[Cl(-)]a > pl[Cl(-)]v,红细胞内氯离子浓度iRBC[Cl(-)]a < iRBC[Cl(-)]v。血浆钾离子浓度pl[K(+)]a和plK(+)起初均升高然后降低,运动后马匹出现低钾血症。运动过程中红细胞内氯离子浓度iRBCCl(-)和iRBCCl(-)均降低,但二者的动静脉差值无变化。血浆钾离子浓度pl[K(+)]不存在动静脉差值。红细胞内钾离子浓度iRBC[K (+)]a > iRBC[K(+)]v。相反,红细胞内钠离子浓度iRBC[Na(+)]a < iRBC[Na(+)]v。动脉血血浆钠离子浓度pl[Na(+)]a < pl[Na(+)]v,总蛋白浓度[TP]a < [TP]v。
红细胞内和血浆中氯离子、钾离子和钠离子浓度存在显著的动静脉差异,这反映了离子跨红细胞细胞膜的移动在调节酸碱平衡以及这些离子的血浆浓度中所起的作用。二氧化碳呼出对这种离子通量有重大影响。