Suppr超能文献

去除尖峰和局部场电位之间的虚假相关性。

Removal of spurious correlations between spikes and local field potentials.

机构信息

Montreal Neurological Institute, McGill University School of Medicine, Department of Neurology and Neurosurgery, 3801 University St., Montreal, Quebec H3A 2B4, Canada.

出版信息

J Neurophysiol. 2011 Jan;105(1):474-86. doi: 10.1152/jn.00642.2010. Epub 2010 Nov 10.

Abstract

Single neurons carry out important sensory and motor functions related to the larger networks in which they are embedded. Understanding the relationships between single-neuron spiking and network activity is therefore of great importance and the latter can be readily estimated from low-frequency brain signals known as local field potentials (LFPs). In this work we examine a number of issues related to the estimation of spike and LFP signals. We show that spike trains and individual spikes contain power at the frequencies that are typically thought to be exclusively related to LFPs, such that simple frequency-domain filtering cannot be effectively used to separate the two signals. Ground-truth simulations indicate that the commonly used method of estimating the LFP signal by low-pass filtering the raw voltage signal leads to artifactual correlations between spikes and LFPs and that these correlations exert a powerful influence on popular metrics of spike-LFP synchronization. Similar artifactual results were seen in data obtained from electrophysiological recordings in macaque visual cortex, when low-pass filtering was used to estimate LFP signals. In contrast LFP tuning curves in response to sensory stimuli do not appear to be affected by spike contamination, either in simulations or in real data. To address the issue of spike contamination, we devised a novel Bayesian spike removal algorithm and confirmed its effectiveness in simulations and by applying it to the electrophysiological data. The algorithm, based on a rigorous mathematical framework, outperforms other methods of spike removal on most metrics of spike-LFP correlations. Following application of this spike removal algorithm, many of our electrophysiological recordings continued to exhibit spike-LFP correlations, confirming previous reports that such relationships are a genuine aspect of neuronal activity. Overall, these results show that careful preprocessing is necessary to remove spikes from LFP signals, but that when effective spike removal is used, spike-LFP correlations can potentially yield novel insights about brain function.

摘要

单个神经元执行与它们嵌入的更大网络相关的重要感觉和运动功能。因此,理解单个神经元放电与网络活动之间的关系非常重要,而后者可以从称为局部场电位 (LFP) 的低频脑信号中进行估算。在这项工作中,我们研究了与 Spike 和 LFP 信号估算相关的一些问题。我们表明, Spike 序列和单个 Spike 都在通常被认为与 LFP 完全相关的频率范围内包含功率,因此简单的频域滤波不能有效地用于分离这两种信号。真实模拟表明,通过对原始电压信号进行低通滤波来估算 LFP 信号的常用方法会导致 Spike 和 LFP 之间出现人为相关性,并且这些相关性对 Spike-LFP 同步的流行指标产生了强大的影响。当使用低通滤波来估算 LFP 信号时,在从猕猴视觉皮层获得的电生理记录中获得的数据中也看到了类似的人为结果。相比之下,LFP 调谐曲线对感觉刺激的反应似乎不受 Spike 污染的影响,无论是在模拟中还是在真实数据中。为了解决 Spike 污染问题,我们设计了一种新颖的贝叶斯 Spike 去除算法,并通过在模拟和电生理数据中应用来验证其有效性。该算法基于严格的数学框架,在 Spike-LFP 相关性的大多数指标上都优于其他 Spike 去除方法。在应用此 Spike 去除算法之后,我们的许多电生理记录仍然显示出 Spike-LFP 相关性,这证实了先前的报告,即这种关系是神经元活动的真实方面。总体而言,这些结果表明,需要仔细的预处理才能从 LFP 信号中去除 Spike,但当使用有效的 Spike 去除时,Spike-LFP 相关性可以潜在地为大脑功能提供新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验