Suppr超能文献

基于结构相似性的折叠空间中蛋白质结合区域推断的研究。

Studies on the inference of protein binding regions across fold space based on structural similarities.

机构信息

Structural Bioinformatics, BIOTEC, Technical University of Dresden, Tatzberg 47-51, 01307 Dresden, Germany.

出版信息

Proteins. 2011 Feb;79(2):499-508. doi: 10.1002/prot.22897.

Abstract

The emerging picture of a continuous protein fold space highlights the existence of non obvious structural similarities between proteins with apparent different topologies. The identification of structure resemblances across fold space and the analysis of similar recognition regions may be a valuable source of information towards protein structure-based functional characterization. In this work, we use non-sequential structural alignment methods (ns-SAs) to identify structural similarities between protein pairs independently of their SCOP hierarchy, and we calculate the significance of binding region conservation using the interacting residues overlap in the ns-SA. We cluster the binding inferences for each family to distinguish already known family binding regions from putative new ones. Our methodology exploits the enormous amount of data available in the PDB to identify binding region similarities within protein families and to propose putative binding regions. Our results indicate that there is a plethora of structurally common binding regions among proteins, independently of current fold classifications. We obtain a 6- to 8-fold enrichment of novel binding regions, and identify binding inferences for 728 protein families that so far lack binding information in the PDB. We explore binding mode analogies between ligands from commonly clustered binding regions to investigate the utility of our methodology. A comprehensive analysis of the obtained binding inferences may help in the functional characterization of protein recognition and assist rational engineering. The data obtained in this work is available in the download link at www.scowlp.org.

摘要

不断出现的蛋白质折叠空间全景图突出表明,具有明显不同拓扑结构的蛋白质之间存在不明显的结构相似性。在折叠空间中识别结构相似性,并分析相似的识别区域,可能是基于蛋白质结构的功能特征分析的有价值的信息来源。在这项工作中,我们使用非序列结构比对方法(ns-SA),在不考虑 SCOP 层次结构的情况下,确定蛋白质对之间的结构相似性,并使用 ns-SA 中的相互作用残基重叠来计算结合区域保守性的显著性。我们对每个家族的结合推断进行聚类,以区分已知家族的结合区域和假定的新结合区域。我们的方法利用 PDB 中可用的大量数据,在蛋白质家族内识别结合区域相似性,并提出假定的结合区域。我们的结果表明,在不考虑当前折叠分类的情况下,蛋白质之间存在大量结构上共同的结合区域。我们获得了 6 到 8 倍的新型结合区域的富集,并确定了 728 个蛋白质家族的结合推断,到目前为止,这些家族在 PDB 中缺乏结合信息。我们探索了来自常见聚类结合区域的配体之间的结合模式类比,以研究我们方法的实用性。对获得的结合推断进行全面分析,可能有助于蛋白质识别的功能特征分析,并有助于合理设计。这项工作中获得的数据可在 www.scowlp.org 的下载链接中获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验