Suppr超能文献

蛋白结合特异性与混杂性。

Protein binding specificity versus promiscuity.

机构信息

Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

Curr Opin Struct Biol. 2011 Feb;21(1):50-61. doi: 10.1016/j.sbi.2010.10.002. Epub 2010 Nov 9.

Abstract

Interactions between macromolecules in general, and between proteins in particular, are essential for any life process. Examples include transfer of information, inhibition or activation of function, molecular recognition as in the immune system, assembly of macromolecular structures and molecular machines, and more. Proteins interact with affinities ranging from millimolar to femtomolar and, because affinity determines the concentration required to obtain 50% binding, the amount of different complexes formed is very much related to local concentrations. Although the concentration of a specific binding partner is usually quite low in the cell (nanomolar to micromolar), the total concentration of other macromolecules is very high, allowing weak and non-specific interactions to play important roles. In this review we address the question of binding specificity, that is, how do some proteins maintain monogamous relations while others are clearly polygamous. We examine recent work that addresses the molecular and structural basis for specificity versus promiscuity. We show through examples how multiple solutions exist to achieve binding via similar interfaces and how protein specificity can be tuned using both positive and negative selection (specificity by demand). Binding of a protein to numerous partners can be promoted through variation in which residues are used for binding, conformational plasticity and/or post-translational modification. Natively unstructured regions represent the extreme case in which structure is obtained only upon binding. Many natively unstructured proteins serve as hubs in protein-protein interaction networks and such promiscuity can be of functional importance in biology.

摘要

蛋白质相互作用

特异性与多效性的分子基础

蛋白质与其他生物大分子之间的相互作用是生命过程的基础。这些相互作用包括信息传递、功能的抑制或激活、分子识别(如免疫系统)、大分子结构和分子机器的组装等等。蛋白质的亲和力范围从毫摩尔到飞摩尔,因为亲和力决定了获得 50%结合所需的浓度,所以不同复合物的形成量与局部浓度密切相关。尽管特定结合伴侣在细胞中的浓度通常较低(纳摩尔到微摩尔),但其他生物大分子的总浓度非常高,这使得弱的和非特异性的相互作用能够发挥重要作用。在这篇综述中,我们探讨了结合特异性的问题,即为什么有些蛋白质保持一夫一妻制,而有些蛋白质则明显是多配偶制。我们检查了最近解决特异性与多效性的分子和结构基础的工作。我们通过实例展示了如何通过类似的界面实现结合的多种解决方案,以及如何通过正选择和负选择(需求特异性)来调节蛋白质的特异性。通过改变用于结合的残基、构象灵活性和/或翻译后修饰,可以促进蛋白质与众多伴侣的结合。天然无结构区域代表了仅在结合时才获得结构的极端情况。许多天然无结构的蛋白质作为蛋白质-蛋白质相互作用网络中的枢纽,这种多效性在生物学中可能具有重要的功能意义。

相似文献

1
Protein binding specificity versus promiscuity.
Curr Opin Struct Biol. 2011 Feb;21(1):50-61. doi: 10.1016/j.sbi.2010.10.002. Epub 2010 Nov 9.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Protein promiscuity: drug resistance and native functions--HIV-1 case.
J Biomol Struct Dyn. 2005 Jun;22(6):615-24. doi: 10.1080/07391102.2005.10531228.
6
The role of flexibility and conformational selection in the binding promiscuity of PDZ domains.
PLoS Comput Biol. 2012;8(11):e1002749. doi: 10.1371/journal.pcbi.1002749. Epub 2012 Nov 1.
7
Structural characterisation and functional significance of transient protein-protein interactions.
J Mol Biol. 2003 Jan 31;325(5):991-1018. doi: 10.1016/s0022-2836(02)01281-0.
8
Evolution of specificity in protein-protein interactions.
Biophys J. 2014 Oct 7;107(7):1686-96. doi: 10.1016/j.bpj.2014.08.004.
9
Flexible nets. The roles of intrinsic disorder in protein interaction networks.
FEBS J. 2005 Oct;272(20):5129-48. doi: 10.1111/j.1742-4658.2005.04948.x.
10
Distinct roles of overlapping and non-overlapping regions of hub protein interfaces in recognition of multiple partners.
J Mol Biol. 2011 Aug 19;411(3):713-27. doi: 10.1016/j.jmb.2011.06.027. Epub 2011 Jun 22.

引用本文的文献

2
Nonspecific interactions can lead to liquid-liquid phase separation in coiled-coil proteins models.
bioRxiv. 2025 May 15:2025.05.09.653163. doi: 10.1101/2025.05.09.653163.
3
A Laboratory Protocol for Routine Therapeutic Drug Monitoring of Beta-Lactams Antimicrobials in Horses and Dogs.
Antibiotics (Basel). 2025 Apr 9;14(4):390. doi: 10.3390/antibiotics14040390.
5
Contextual computation by competitive protein dimerization networks.
Cell. 2025 Apr 3;188(7):1984-2002.e17. doi: 10.1016/j.cell.2025.01.036. Epub 2025 Feb 19.
6
Probing Electrostatic and Hydrophobic Associative Interactions in Cells.
J Phys Chem B. 2024 Nov 7;128(44):10861-10869. doi: 10.1021/acs.jpcb.4c05990. Epub 2024 Oct 30.
7
The genetic architecture of protein interaction affinity and specificity.
Nat Commun. 2024 Oct 14;15(1):8868. doi: 10.1038/s41467-024-53195-4.
8
A look beyond the QR code of SNARE proteins.
Protein Sci. 2024 Sep;33(9):e5158. doi: 10.1002/pro.5158.
9
Competition between physical search and a weak-to-strong transition rate-limits kinesin binding times.
PLoS Comput Biol. 2024 May 20;20(5):e1012158. doi: 10.1371/journal.pcbi.1012158. eCollection 2024 May.

本文引用的文献

1
Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains.
J Mol Biol. 2010 Sep 17;402(2):460-74. doi: 10.1016/j.jmb.2010.07.032. Epub 2010 Jul 21.
2
3
The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer.
Nat Chem Biol. 2010 Aug;6(8):595-601. doi: 10.1038/nchembio.391. Epub 2010 Jun 20.
4
Effects of proteins on protein diffusion.
J Am Chem Soc. 2010 Jul 14;132(27):9392-7. doi: 10.1021/ja102296k.
5
Intrinsically disordered proteins in bcl-2 regulated apoptosis.
Int J Mol Sci. 2010 Apr 16;11(4):1808-24. doi: 10.3390/ijms11041808.
6
The structural and energetic basis for high selectivity in a high-affinity protein-protein interaction.
Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10080-5. doi: 10.1073/pnas.0910756107. Epub 2010 May 17.
7
A synthetic coiled-coil interactome provides heterospecific modules for molecular engineering.
J Am Chem Soc. 2010 May 5;132(17):6025-31. doi: 10.1021/ja907617a.
8
The functional capacity of the natural amino acids for molecular recognition.
Mol Biosyst. 2010 Jul;6(7):1186-94. doi: 10.1039/b927393j. Epub 2010 Apr 9.
9
Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL.
J Mol Biol. 2010 May 21;398(5):747-62. doi: 10.1016/j.jmb.2010.03.058. Epub 2010 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验