Suppr超能文献

全基因组关联和基因组选择在动物育种中的应用。

Genome-wide association and genomic selection in animal breeding.

机构信息

Biosciences Research Division, Department of Primary Industries Victoria, 1 Park Drive, Bundoora 3083, Australia.

出版信息

Genome. 2010 Nov;53(11):876-83. doi: 10.1139/G10-076.

Abstract

Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.

摘要

从家畜和人类的全基因组关联研究结果得出结论,单个数量性状位点 (QTL) 对复杂性状(如产量)的影响可能很小;因此,需要大量的 QTL 来解释这些性状的遗传变异。鉴于这种遗传结构,仅使用少量 DNA 标记追踪有限数量的 QTL 的标记辅助选择 (MAS) 计划的收益可能很小。这导致了替代技术的发展,用于利用可用的密集单核苷酸多态性 (SNP) 信息,称为基因组选择。基因组选择使用全基因组面板的密集标记,因此所有 QTL 都可能与至少一个 SNP 处于连锁不平衡状态。基因组育种值预计是这些 SNP 在整个基因组中效应的总和。在奶牛育种中,基因组估计育种值 (GEBV) 的准确性以及这些值在生命早期可用的事实导致了该技术的快速采用。在这里,我们讨论了为实现未来世代 GEBV 的准确预测所需的实验设计,包括所需标记的数量和估计标记效应的参考群体的大小。我们还介绍了一种使用基因组关系矩阵实施基因组选择的简单方法。讨论的未来挑战包括使用全基因组序列数据来提高基因组选择的准确性和通过基因组关系管理近交。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验