Suppr超能文献

预期交叉值在伴侣选择问题中的发展与优化。

Development and optimization of expected cross value for mate selection problems.

机构信息

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK, USA.

出版信息

Heredity (Edinb). 2024 Aug;133(2):113-125. doi: 10.1038/s41437-024-00697-y. Epub 2024 Jul 2.

Abstract

In this study, we address the mate selection problem in the hybridization stage of a breeding pipeline, which constitutes the multi-objective breeding goal key to the performance of a variety development program. The solution framework we formulate seeks to ensure that individuals with the most desirable genomic characteristics are selected to cross in order to maximize the likelihood of the inheritance of desirable genetic materials to the progeny. Unlike approaches that use phenotypic values for parental selection and evaluate individuals separately, we use a criterion that relies on the genetic architecture of traits and evaluates combinations of genomic information of the pairs of individuals. We introduce the expected cross value (ECV) criterion that measures the expected number of desirable alleles for gametes produced by pairs of individuals sampled from a population of potential parents. We use the ECV criterion to develop an integer linear programming formulation for the parental selection problem. The formulation is capable of controlling the inbreeding level between selected mates. We evaluate the approach or two applications: (i) improving multiple target traits simultaneously, and (ii) finding a multi-parental solution to design crossing blocks. We evaluate the performance of the ECV criterion using a simulation study. Finally, we discuss how the ECV criterion and the proposed integer linear programming techniques can be applied to improve breeding efficiency while maintaining genetic diversity in a breeding program.

摘要

在这项研究中,我们解决了杂交阶段的交配选择问题,这是品种开发计划性能的多目标育种目标的关键。我们制定的解决方案框架旨在确保选择具有最理想基因组特征的个体进行杂交,以最大程度地提高将理想遗传物质遗传给后代的可能性。与使用表型值进行亲本选择并单独评估个体的方法不同,我们使用基于性状遗传结构并评估个体对基因组信息组合的标准。我们引入了预期杂交值(ECV)标准,该标准衡量从潜在亲本群体中抽样的个体对产生配子的期望理想等位基因数量。我们使用 ECV 标准来开发用于亲本选择问题的整数线性规划公式。该公式能够控制选择伴侣之间的近交程度。我们评估了两种应用:(i)同时改进多个目标性状,(ii)找到多亲本解决方案来设计杂交块。我们使用模拟研究评估了 ECV 标准的性能。最后,我们讨论了如何应用 ECV 标准和提出的整数线性规划技术来提高繁殖效率,同时保持繁殖计划中的遗传多样性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9fa/11286873/0c8873c26f5f/41437_2024_697_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验