IEEE Trans Pattern Anal Mach Intell. 2011 Jul;33(7):1384-99. doi: 10.1109/TPAMI.2010.200. Epub 2010 Nov 18.
In this work, we extend a common framework for graph-based image segmentation that includes the graph cuts, random walker, and shortest path optimization algorithms. Viewing an image as a weighted graph, these algorithms can be expressed by means of a common energy function with differing choices of a parameter q acting as an exponent on the differences between neighboring nodes. Introducing a new parameter p that fixes a power for the edge weights allows us to also include the optimal spanning forest algorithm for watershed in this same framework. We then propose a new family of segmentation algorithms that fixes p to produce an optimal spanning forest but varies the power q beyond the usual watershed algorithm, which we term the power watershed. In particular, when q=2, the power watershed leads to a multilabel, scale and contrast invariant, unique global optimum obtained in practice in quasi-linear time. Placing the watershed algorithm in this energy minimization framework also opens new possibilities for using unary terms in traditional watershed segmentation and using watershed to optimize more general models of use in applications beyond image segmentation.
在这项工作中,我们扩展了一种基于图的图像分割的通用框架,其中包括图割、随机游走和最短路径优化算法。将图像视为加权图,这些算法可以通过具有不同参数 q 的共同能量函数来表示,该参数 q 作为相邻节点之间差值的指数。引入一个新参数 p 来固定边缘权重的幂,使我们能够在同一框架中还包括用于分水岭的最优生成树算法。然后,我们提出了一组新的分割算法,将 p 固定为生成最优生成树,但将参数 q 从通常的分水岭算法扩展到 q>2,我们称之为幂分水岭。特别是,当 q=2 时,幂分水岭会导致在准线性时间内获得实践中唯一的多标签、尺度和对比度不变的全局最优解。将分水岭算法置于这种能量最小化框架中,也为在传统分水岭分割中使用一元项以及使用分水岭优化图像分割以外的应用中更通用的模型开辟了新的可能性。