Suppr超能文献

使用成对 RNA FISH 数据评估基因表达动力学。

Evaluating gene expression dynamics using pairwise RNA FISH data.

机构信息

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America.

出版信息

PLoS Comput Biol. 2010 Nov 4;6(11):e1000979. doi: 10.1371/journal.pcbi.1000979.

Abstract

Recently, a novel approach has been developed to study gene expression in single cells with high time resolution using RNA Fluorescent In Situ Hybridization (FISH). The technique allows individual mRNAs to be counted with high accuracy in wild-type cells, but requires cells to be fixed; thus, each cell provides only a "snapshot" of gene expression. Here we show how and when RNA FISH data on pairs of genes can be used to reconstruct real-time dynamics from a collection of such snapshots. Using maximum-likelihood parameter estimation on synthetically generated, noisy FISH data, we show that dynamical programs of gene expression, such as cycles (e.g., the cell cycle) or switches between discrete states, can be accurately reconstructed. In the limit that mRNAs are produced in short-lived bursts, binary thresholding of the FISH data provides a robust way of reconstructing dynamics. In this regime, prior knowledge of the type of dynamics--cycle versus switch--is generally required and additional constraints, e.g., from triplet FISH measurements, may also be needed to fully constrain all parameters. As a demonstration, we apply the thresholding method to RNA FISH data obtained from single, unsynchronized cells of Saccharomyces cerevisiae. Our results support the existence of metabolic cycles and provide an estimate of global gene-expression noise. The approach to FISH data presented here can be applied in general to reconstruct dynamics from snapshots of pairs of correlated quantities including, for example, protein concentrations obtained from immunofluorescence assays.

摘要

最近,开发了一种新方法,可使用 RNA 荧光原位杂交 (FISH) 以高时间分辨率研究单细胞中的基因表达。该技术可以在野生型细胞中非常准确地计数单个 mRNA,但需要固定细胞;因此,每个细胞仅提供基因表达的“快照”。在这里,我们展示了如何以及何时可以使用关于一对基因的 RNA FISH 数据来从这些快照的集合中重建实时动态。我们使用最大似然参数估计对合成产生的、有噪声的 FISH 数据进行了分析,结果表明,基因表达的动态程序(例如周期(例如细胞周期)或离散状态之间的转换)可以被准确重建。在 mRNA 以短暂爆发方式产生的极限情况下,对 FISH 数据进行二进制阈值处理提供了一种重建动力学的稳健方法。在该状态下,通常需要有关动力学类型(循环与开关)的先验知识,并且可能还需要其他约束条件(例如来自三联 FISH 测量)来完全约束所有参数。作为演示,我们将阈值方法应用于从酿酒酵母的单个未同步细胞获得的 RNA FISH 数据。我们的结果支持代谢循环的存在,并提供了对全局基因表达噪声的估计。这里提出的 FISH 数据方法可以一般应用于从相关数量的快照(例如,从免疫荧光测定获得的蛋白质浓度)中重建动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7b/2973809/201573a62f04/pcbi.1000979.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验