Suppr超能文献

纳米化和纳米限域:实现储氢目标的新策略。

Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals.

机构信息

Debye Institute for Nanomaterials Science, Utrecht University, The Netherlands.

出版信息

ChemSusChem. 2010 Dec 17;3(12):1332-48. doi: 10.1002/cssc.201000248.

Abstract

Hydrogen is expected to play an important role as an energy carrier in a future, more sustainable society. However, its compact, efficient, and safe storage is an unresolved issue. One of the main options is solid-state storage in hydrides. Unfortunately, no binary metal hydride satisfies all requirements regarding storage density and hydrogen release and uptake. Increasingly complex hydride systems are investigated, but high thermodynamic stabilities as well as slow kinetics and poor reversibility are important barriers for practical application. Nanostructuring by ball-milling is an established method to reduce crystallite sizes and increase reaction rates. Since five years attention has also turned to alternative preparation techniques that enable particle sizes below 10 nanometers and are often used in conjunction with porous supports or scaffolds. In this Review we discuss the large impact of nanosizing and -confinement on the hydrogen sorption properties of metal hydrides. We illustrate possible preparation strategies, provide insight into the reasons for changes in kinetics, reversibility and thermodynamics, and highlight important progress in this field. All in all we provide the reader with a clear view of how nanosizing and -confinement can beneficially affect the hydrogen sorption properties of the most prominent materials that are currently considered for solid-state hydrogen storage.

摘要

氢气有望在未来更加可持续的社会中作为能源载体发挥重要作用。然而,其紧凑、高效和安全的储存仍是一个未解决的问题。固态储氢是主要选择之一,其中金属氢化物是一种有前途的候选材料。然而,没有二元金属氢化物能完全满足关于存储密度和氢释放与吸收的所有要求。越来越复杂的氢化物体系正在被研究,但高热力学稳定性以及缓慢的动力学和较差的可逆性是实际应用的重要障碍。球磨纳米结构化是一种降低晶粒尺寸和提高反应速率的成熟方法。自五年前以来,人们也开始关注替代制备技术,这些技术可以实现粒径低于 10 纳米,并经常与多孔载体或支架结合使用。在这篇综述中,我们讨论了纳米化和限域对金属氢化物吸氢性能的巨大影响。我们举例说明了可能的制备策略,深入探讨了动力学、可逆性和热力学变化的原因,并强调了该领域的重要进展。总的来说,我们为读者提供了一个清晰的视角,了解纳米化和限域如何能够有益地影响目前被认为用于固态储氢的最主要材料的吸氢性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验