Suppr超能文献

拟南芥β-酮酰-[酰基载体蛋白]合酶 i 对于脂肪酸的合成至关重要,并在叶绿体分裂和胚胎发育中发挥作用。

Arabidopsis β-ketoacyl-[acyl carrier protein] synthase i is crucial for fatty acid synthesis and plays a role in chloroplast division and embryo development.

机构信息

National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, 200032 Shanghai, China.

出版信息

Plant Cell. 2010 Nov;22(11):3726-44. doi: 10.1105/tpc.110.075564. Epub 2010 Nov 16.

Abstract

Lipid metabolism plays a pivotal role in cell structure and in multiple plant developmental processes. β-Ketoacyl-[acyl carrier protein] synthase I (KASI) catalyzes the elongation of de novo fatty acid (FA) synthesis. Here, we report the functional characterization of KASI in the regulation of chloroplast division and embryo development. Phenotypic observation of an Arabidopsis thaliana T-DNA insertion mutant, kasI, revealed multiple morphological defects, including chlorotic (in netted patches) and curly leaves, reduced fertility, and semidwarfism. There are only one to five enlarged chloroplasts in the mesophyll cells of chlorotic sectors of young kasI rosette leaves, indicating suppressed chloroplast division under KASI deficiency. KASI deficiency results in a significant change in the polar lipid composition, which causes the suppressed expression of FtsZ and Min system genes, disordered Z-ring placement in the oversized chloroplast, and inhibited polymerization of FtsZ protein at mid-site of the chloroplast in kasI. In addition, KASI deficiency results in disrupted embryo development before the globular stage and dramatically reduces FA levels (~33.6% of the wild type) in seeds. These results demonstrate that de novo FA synthesis is crucial and has pleiotropic effects on plant growth. The polar lipid supply is important for chloroplast division and development, revealing a key function of FA synthesis in plastid development.

摘要

脂代谢在细胞结构和多种植物发育过程中起着关键作用。β-酮酰-[酰基载体蛋白]合酶 I(KASI)催化从头合成脂肪酸(FA)的延长。在这里,我们报告了 KASI 在叶绿体分裂和胚胎发育调控中的功能特征。拟南芥 T-DNA 插入突变体 kasI 的表型观察显示出多种形态缺陷,包括叶片褪绿(呈网纹状)和卷曲、生育力降低和半矮化。在 kasI 拟南芥莲座叶的褪绿叶区的叶肉细胞中,只有一个到五个放大的叶绿体,表明在 KASI 缺乏时抑制了叶绿体分裂。KASI 缺乏导致极性脂组成发生显著变化,导致 FtsZ 和 Min 系统基因表达下调,在过大的叶绿体中 Z 环位置紊乱,以及 FtsZ 蛋白在叶绿体中部的聚合受到抑制。此外,KASI 缺乏导致胚胎在球形阶段前发育中断,并显著降低种子中的 FA 水平(约为野生型的 33.6%)。这些结果表明从头 FA 合成至关重要,并对植物生长具有多效性。极性脂供应对叶绿体分裂和发育很重要,揭示了 FA 合成在质体发育中的关键功能。

相似文献

2
Molecular cloning and characterization of two β-ketoacyl-acyl carrier protein synthase I genes from Jatropha curcas L.
J Plant Physiol. 2017 Jul;214:152-160. doi: 10.1016/j.jplph.2017.05.003. Epub 2017 May 4.
4
Functional divergence of chloroplast Cpn60α subunits during Arabidopsis embryo development.
PLoS Genet. 2017 Sep 29;13(9):e1007036. doi: 10.1371/journal.pgen.1007036. eCollection 2017 Sep.
6
9
Very-long-chain fatty acids have an essential role in plastid division by controlling Z-ring formation in Arabidopsis thaliana.
Genes Cells. 2012 Aug;17(8):709-19. doi: 10.1111/j.1365-2443.2012.01619.x. Epub 2012 Jun 27.

引用本文的文献

4
Comparative Transcriptomic and Lipidomic Analysis of Fatty Acid Accumulation in Three Varieties During Seed Maturing.
J Agric Food Chem. 2024 Aug 14;72(32):18257-18270. doi: 10.1021/acs.jafc.4c03614. Epub 2024 Jul 31.
5
Genetic diversity and candidate genes for transient waterlogging tolerance in mungbean at the germination and seedling stages.
Front Plant Sci. 2024 Mar 21;15:1297096. doi: 10.3389/fpls.2024.1297096. eCollection 2024.
6
Overexpression of genes involved in fatty acid biosynthesis increases lipid content in the NaHCO-tolerant sp. JB6.
Microbiol Spectr. 2024 Jan 11;12(1):e0318423. doi: 10.1128/spectrum.03184-23. Epub 2023 Dec 4.
7
Genetic and Morpho-Physiological Differences among Transgenic and No-Transgenic Cotton Cultivars.
Plants (Basel). 2023 Sep 29;12(19):3437. doi: 10.3390/plants12193437.
9
A chromosome 16 deletion conferring a high sucrose phenotype in soybean.
Theor Appl Genet. 2023 Apr 11;136(5):109. doi: 10.1007/s00122-023-04354-6.

本文引用的文献

1
Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis.
Plant Cell. 2010 Feb;22(2):364-75. doi: 10.1105/tpc.109.071209. Epub 2010 Feb 9.
3
Plant-specific protein MCD1 determines the site of chloroplast division in concert with bacteria-derived MinD.
Curr Biol. 2009 Jan 27;19(2):151-6. doi: 10.1016/j.cub.2008.12.018. Epub 2009 Jan 8.
4
Plastid division: across time and space.
Curr Opin Plant Biol. 2008 Dec;11(6):577-84. doi: 10.1016/j.pbi.2008.10.001. Epub 2008 Nov 5.
5
7
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Mol Biol Evol. 2007 Aug;24(8):1596-9. doi: 10.1093/molbev/msm092. Epub 2007 May 7.
8
Chloroplast division.
Traffic. 2007 May;8(5):451-61. doi: 10.1111/j.1600-0854.2007.00545.x.
9
Arabidopsis PLDzeta2 regulates vesicle trafficking and is required for auxin response.
Plant Cell. 2007 Jan;19(1):281-95. doi: 10.1105/tpc.106.041426. Epub 2007 Jan 26.
10
Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a phospholipase Dalpha1 knockout mutant.
Phytochemistry. 2006 Sep;67(17):1907-24. doi: 10.1016/j.phytochem.2006.06.005. Epub 2006 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验