Suppr超能文献

基于视听生物反馈的呼吸训练系统的调试和质量保证。

Commissioning and quality assurance for a respiratory training system based on audiovisual biofeedback.

机构信息

Department of Radiation Oncology, Stanford University. Stanford, CA, USA.

出版信息

J Appl Clin Med Phys. 2010 Jul 12;11(4):3262. doi: 10.1120/jacmp.v11i4.3262.

Abstract

A respiratory training system based on audiovisual biofeedback has been implemented at our institution. It is intended to improve patients' respiratory regularity during four-dimensional (4D) computed tomography (CT) image acquisition. The purpose is to help eliminate the artifacts in 4D-CT images caused by irregular breathing, as well as improve delivery efficiency during treatment, where respiratory irregularity is a concern. This article describes the commissioning and quality assurance (QA) procedures developed for this peripheral respiratory training system, the Stanford Respiratory Training (START) system. Using the Varian real-time position management system for the respiratory signal input, the START software was commissioned and able to acquire sample respiratory traces, create a patient-specific guiding waveform, and generate audiovisual signals for improving respiratory regularity. Routine QA tests that include hardware maintenance, visual guiding-waveform creation, auditory sounds synchronization, and feedback assessment, have been developed for the START system. The QA procedures developed here for the START system could be easily adapted to other respiratory training systems based on audiovisual biofeedback.

摘要

我们机构已经实施了一种基于视听生物反馈的呼吸训练系统,旨在提高患者在四维(4D)计算机断层扫描(CT)图像采集期间的呼吸规律性。其目的是帮助消除因呼吸不规则而导致的 4D-CT 图像中的伪影,并提高治疗过程中的输送效率,因为呼吸不规则是一个关注点。本文介绍了为该外周呼吸训练系统(斯坦福呼吸训练系统,即 START 系统)开发的调试和质量保证(QA)程序。该系统使用瓦里安实时位置管理系统进行呼吸信号输入,完成了 START 软件的调试,并能够采集样本呼吸轨迹,创建特定于患者的引导波形,并生成改善呼吸规律性的视听信号。为 START 系统开发了包括硬件维护、可视化引导波形创建、音频同步和反馈评估在内的常规 QA 测试。这里为 START 系统开发的 QA 程序可以轻松应用于其他基于视听生物反馈的呼吸训练系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/005b/5720420/5ee4eaeccca8/ACM2-11-042-g001.jpg

相似文献

1
Commissioning and quality assurance for a respiratory training system based on audiovisual biofeedback.
J Appl Clin Med Phys. 2010 Jul 12;11(4):3262. doi: 10.1120/jacmp.v11i4.3262.
2
Prospective displacement and velocity-based cine 4D CT.
Med Phys. 2008 Oct;35(10):4501-12. doi: 10.1118/1.2977539.
3
Acquiring a four-dimensional computed tomography dataset using an external respiratory signal.
Phys Med Biol. 2003 Jan 7;48(1):45-62. doi: 10.1088/0031-9155/48/1/304.
4
Respiratory regularity gated 4D CT acquisition: concepts and proof of principle.
Australas Phys Eng Sci Med. 2007 Sep;30(3):211-20. doi: 10.1007/BF03178428.
6
The impact of audiovisual biofeedback on 4D functional and anatomic imaging: Results of a lung cancer pilot study.
Radiother Oncol. 2016 Aug;120(2):267-72. doi: 10.1016/j.radonc.2016.05.016. Epub 2016 May 30.
7
The impact of audio-visual biofeedback on 4D PET images: results of a phantom study.
Med Phys. 2012 Feb;39(2):1046-57. doi: 10.1118/1.3679012.
10
Video-coaching as biofeedback tool to improve gated treatments: Possibilities and limitations.
Z Med Phys. 2012 Sep;22(3):224-30. doi: 10.1016/j.zemedi.2012.01.001. Epub 2012 Feb 20.

引用本文的文献

1
Visually guided respiratory motion management for Ethos adaptive radiotherapy.
J Appl Clin Med Phys. 2022 Jan;23(1):e13441. doi: 10.1002/acm2.13441. Epub 2021 Oct 25.
2
Evaluation of the new respiratory gating system.
Precis Radiat Oncol. 2017 Dec;1(4):127-133. doi: 10.1002/pro6.34. Epub 2017 Dec 21.
3
Audiovisual biofeedback guided breath-hold improves lung tumor position reproducibility and volume consistency.
Adv Radiat Oncol. 2017 Mar 10;2(3):354-362. doi: 10.1016/j.adro.2017.03.002. eCollection 2017 Jul-Sep.
5
High-resolution imaging of pulmonary ventilation and perfusion with 68Ga-VQ respiratory gated (4-D) PET/CT.
Eur J Nucl Med Mol Imaging. 2014 Feb;41(2):343-9. doi: 10.1007/s00259-013-2607-4. Epub 2013 Nov 6.
7
An automated method for comparing motion artifacts in cine four-dimensional computed tomography images.
J Appl Clin Med Phys. 2012 Nov 8;13(6):3838. doi: 10.1120/jacmp.v13i6.3838.
8
Real-time 4-D radiotherapy for lung cancer.
Cancer Sci. 2012 Jan;103(1):1-6. doi: 10.1111/j.1349-7006.2011.02114.x. Epub 2011 Nov 14.

本文引用的文献

1
Retrospective analysis of artifacts in four-dimensional CT images of 50 abdominal and thoracic radiotherapy patients.
Int J Radiat Oncol Biol Phys. 2008 Nov 15;72(4):1250-8. doi: 10.1016/j.ijrobp.2008.06.1937. Epub 2008 Sep 25.
2
Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform.
Phys Med Biol. 2008 Jun 7;53(11):N197-208. doi: 10.1088/0031-9155/53/11/N01. Epub 2008 May 12.
3
Improvement of the cine-CT based 4D-CT imaging.
Med Phys. 2007 Nov;34(11):4499-503. doi: 10.1118/1.2794225.
4
Phase and amplitude binning for 4D-CT imaging.
Phys Med Biol. 2007 Jun 21;52(12):3515-29. doi: 10.1088/0031-9155/52/12/012. Epub 2007 May 18.
5
The management of respiratory motion in radiation oncology report of AAPM Task Group 76.
Med Phys. 2006 Oct;33(10):3874-900. doi: 10.1118/1.2349696.
6
Investigation of patient, tumour and treatment variables affecting residual motion for respiratory-gated radiotherapy.
Phys Med Biol. 2006 Oct 21;51(20):5305-19. doi: 10.1088/0031-9155/51/20/015. Epub 2006 Oct 2.
8
The application of the sinusoidal model to lung cancer patient respiratory motion.
Med Phys. 2005 Sep;32(9):2850-61. doi: 10.1118/1.2001220.
9
Four-dimensional computed tomography: image formation and clinical protocol.
Med Phys. 2005 Apr;32(4):874-89. doi: 10.1118/1.1869852.
10
Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT.
Med Phys. 2005 Feb;32(2):627-34. doi: 10.1118/1.1855013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验