Suppr超能文献

基于解剖先验的 FDOT 稀疏重建。

Sparsity-driven reconstruction for FDOT with anatomical priors.

机构信息

Swiss Federal Institute of Technology of Lausanne, 1015 Lausanne, Switzerland.

出版信息

IEEE Trans Med Imaging. 2011 May;30(5):1143-53. doi: 10.1109/TMI.2011.2136438. Epub 2011 Apr 15.

Abstract

In this paper we propose a method based on (2, 1)-mixed-norm penalization for incorporating a structural prior in FDOT image reconstruction. The effect of (2, 1)-mixed-norm penalization is twofold: first, a sparsifying effect which isolates few anatomical regions where the fluorescent probe has accumulated, and second, a regularization effect inside the selected anatomical regions. After formulating the reconstruction in a variational framework, we analyze the resulting optimization problem and derive a practical numerical method tailored to (2, 1)-mixed-norm regularization. The proposed method includes as particular cases other sparsity promoting regularization methods such as l(1)-norm penalization and total variation penalization. Results on synthetic and experimental data are presented.

摘要

在本文中,我们提出了一种基于(2,1)混合范数惩罚的方法,将结构先验纳入 FDOT 图像重建中。(2,1)混合范数惩罚的效果有两方面:一是稀疏效果,它隔离了荧光探针积累的少数几个解剖区域;二是所选解剖区域内的正则化效果。在变分框架中对重建进行公式化后,我们分析了所得的优化问题,并推导出了一种针对(2,1)混合范数正则化的实用数值方法。所提出的方法包括其他促进稀疏性的正则化方法(如 l(1)-范数惩罚和全变差惩罚)作为特例。给出了合成数据和实验数据的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验