Suppr超能文献

使用多维气相色谱法加速对生物样品中的代谢组学、药物及其代谢物的分析。

Accelerating analysis for metabolomics, drugs and their metabolites in biological samples using multidimensional gas chromatography.

作者信息

Mitrevski Blagoj S, Kouremenos Konstantinos A, Marriott Philip J

出版信息

Bioanalysis. 2009 May;1(2):367-91. doi: 10.4155/bio.09.28.

Abstract

Gas chromatography (GC) with mass spectrometry (MS) is one of the great enabling analytical tools available to the chemical and biochemical analyst for the measurement of volatile and semi-volatile compounds. From the analysis result, it is possible to assess progress in chemical reactions, to monitor environmental pollutants in a wide range of soil, water or air samples, to determine if an athlete or horse trainer has contravened doping laws, or if crude oil has migrated through subsurface rock to a reservoir. Each of these scenarios and samples has an associated implementation method for GC-MS. However, few samples and the associated interpretation of data is as complex or important as biochemical sample analysis for trace drugs or metabolites. Improving the analysis in both the GC and MS domains is a continual search for better separation, selectivity and sensitivity. Multidimensional methods are playing important roles in providing quality data to address the needs of analysts.

摘要

气相色谱(GC)与质谱(MS)联用是化学和生化分析人员用于测量挥发性和半挥发性化合物的重要分析工具之一。从分析结果中,可以评估化学反应的进展情况,监测各种土壤、水或空气样本中的环境污染物,确定运动员或马匹训练师是否违反了反兴奋剂法规,或者原油是否已通过地下岩石迁移至油藏。这些情况和样本中的每一种都有与之相关的气相色谱-质谱联用实施方法。然而,很少有样本以及相关的数据解读像痕量药物或代谢物的生化样本分析那样复杂或重要。在气相色谱和质谱领域不断改进分析方法,就是要持续寻求更好的分离效果、选择性和灵敏度。多维方法在提供高质量数据以满足分析人员需求方面发挥着重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验