Suppr超能文献

从基因表达数据推导癌症诊断和预后特征。

Derivation of cancer diagnostic and prognostic signatures from gene expression data.

作者信息

Goodison Steve, Sun Yijun, Urquidi Virginia

机构信息

M. D. Anderson Cancer Center Orlando, Cancer Research Institute, 6900 Lake Nona Blvd, Orlando, FL 32827, USA.

出版信息

Bioanalysis. 2010 May;2(5):855-62. doi: 10.4155/bio.10.35.

Abstract

The ability to compare genome-wide expression profiles in human tissue samples has the potential to add an invaluable molecular pathology aspect to the detection and evaluation of multiple diseases. Applications include initial diagnosis, evaluation of disease subtype, monitoring of response to therapy and the prediction of disease recurrence. The derivation of molecular signatures that can predict tumor recurrence in breast cancer has been a particularly intense area of investigation and a number of studies have shown that molecular signatures can outperform currently used clinicopathologic factors in predicting relapse in this disease. However, many of these predictive models have been derived using relatively simple computational algorithms and whether these models are at a stage of development worthy of large-cohort clinical trial validation is currently a subject of debate. In this review, we focus on the derivation of optimal molecular signatures from high-dimensional data and discuss some of the expected future developments in the field.

摘要

在人体组织样本中比较全基因组表达谱的能力,有可能为多种疾病的检测和评估增添极其重要的分子病理学内容。其应用包括初始诊断、疾病亚型评估、治疗反应监测以及疾病复发预测。能够预测乳腺癌肿瘤复发的分子特征的推导,一直是一个特别热门的研究领域,许多研究表明,在预测该疾病的复发方面,分子特征比目前使用的临床病理因素表现更优。然而,这些预测模型大多是使用相对简单的计算算法推导出来的,这些模型是否已发展到值得进行大规模队列临床试验验证的阶段,目前仍是一个有争议的问题。在这篇综述中,我们专注于从高维数据中推导最优分子特征,并讨论该领域一些预期的未来发展。

相似文献

1
Derivation of cancer diagnostic and prognostic signatures from gene expression data.
Bioanalysis. 2010 May;2(5):855-62. doi: 10.4155/bio.10.35.
2
Optimizing molecular signatures for predicting prostate cancer recurrence.
Prostate. 2009 Jul 1;69(10):1119-27. doi: 10.1002/pros.20961.
3
Comparison and unification of genomic signatures in breast cancer.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3869-72. doi: 10.1109/IEMBS.2009.5332633.
4
Derivation of molecular signatures for breast cancer recurrence prediction using a two-way validation approach.
Breast Cancer Res Treat. 2010 Feb;119(3):593-9. doi: 10.1007/s10549-009-0365-6. Epub 2009 Mar 17.
6
Towards improved cancer diagnosis and prognosis using analysis of gene expression data and computer aided imaging.
Exp Biol Med (Maywood). 2009 Aug;234(8):860-79. doi: 10.3181/0902-MR-89. Epub 2009 Jun 2.
7
An algorithm to discover gene signatures with predictive potential.
J Exp Clin Cancer Res. 2010 Sep 2;29(1):120. doi: 10.1186/1756-9966-29-120.

引用本文的文献

1
Pairwise correlation of genes involved in glucose metabolism: a potential diagnostic marker of cancer?
Genes Cancer. 2021 Jun 17;12:69-76. doi: 10.18632/genesandcancer.216. eCollection 2021.
2
Predicting Tumor Sensitivity to Chemotherapeutic Drugs in Oral Squamous Cell Carcinoma Patients.
Sci Rep. 2018 Oct 19;8(1):15545. doi: 10.1038/s41598-018-33998-4.
4
Cancer progression modeling using static sample data.
Genome Biol. 2014 Aug 26;15(8):440. doi: 10.1186/s13059-014-0440-0.
5
Epigenetic silencing of ARRDC3 expression in basal-like breast cancer cells.
Sci Rep. 2014 Jan 24;4:3846. doi: 10.1038/srep03846.
6
A candidate molecular biomarker panel for the detection of bladder cancer.
Cancer Epidemiol Biomarkers Prev. 2012 Dec;21(12):2149-58. doi: 10.1158/1055-9965.EPI-12-0428. Epub 2012 Oct 24.
7
Identification of factors contributing to variability in a blood-based gene expression test.
PLoS One. 2012;7(7):e40068. doi: 10.1371/journal.pone.0040068. Epub 2012 Jul 3.
8
How can grafted breast cancer models be optimized?
Cancer Biol Ther. 2011 Nov 15;12(10):855-64. doi: 10.4161/cbt.12.10.18139.

本文引用的文献

1
A problem of dimensionality: a simple example.
IEEE Trans Pattern Anal Mach Intell. 1979 Mar;1(3):306-7. doi: 10.1109/tpami.1979.4766926.
2
Local-learning-based feature selection for high-dimensional data analysis.
IEEE Trans Pattern Anal Mach Intell. 2010 Sep;32(9):1610-26. doi: 10.1109/TPAMI.2009.190.
3
Pathway-BasedFeature Selection Algorithm for Cancer Microarray Data.
Adv Bioinformatics. 2009;2009:532989. doi: 10.1155/2009/532989. Epub 2010 Mar 3.
6
Genomic approaches to outcome prediction in prostate cancer.
Cancer. 2009 Jul 1;115(13 Suppl):3046-57. doi: 10.1002/cncr.24350.
7
Optimizing molecular signatures for predicting prostate cancer recurrence.
Prostate. 2009 Jul 1;69(10):1119-27. doi: 10.1002/pros.20961.
8
Derivation of molecular signatures for breast cancer recurrence prediction using a two-way validation approach.
Breast Cancer Res Treat. 2010 Feb;119(3):593-9. doi: 10.1007/s10549-009-0365-6. Epub 2009 Mar 17.
10
The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis.
Bioinformatics. 2009 Jan 1;25(1):54-60. doi: 10.1093/bioinformatics/btn354. Epub 2008 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验