Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14850, USA.
J R Soc Interface. 2011 Jul 6;8(60):961-74. doi: 10.1098/rsif.2010.0412. Epub 2010 Nov 17.
Parameter estimation for infectious disease models is important for basic understanding (e.g. to identify major transmission pathways), for forecasting emerging epidemics, and for designing control measures. Differential equation models are often used, but statistical inference for differential equations suffers from numerical challenges and poor agreement between observational data and deterministic models. Accounting for these departures via stochastic model terms requires full specification of the probabilistic dynamics, and computationally demanding estimation methods. Here, we demonstrate the utility of an alternative approach, generalized profiling, which provides robustness to violations of a deterministic model without needing to specify a complete probabilistic model. We introduce novel means for estimating the robustness parameters and for statistical inference in this framework. The methods are applied to a model for pre-vaccination measles incidence in Ontario, and we demonstrate the statistical validity of our inference through extensive simulation. The results confirm that school term versus summer drives seasonality of transmission, but we find no effects of short school breaks and the estimated basic reproductive ratio (0) greatly exceeds previous estimates. The approach applies naturally to any system for which candidate differential equations are available, and avoids many challenges that have limited Monte Carlo inference for state-space models.
传染病模型的参数估计对于基本理解(例如,识别主要传播途径)、预测新出现的传染病以及设计控制措施非常重要。微分方程模型通常被使用,但是微分方程的统计推断受到数值挑战和观测数据与确定性模型之间的不良一致性的影响。通过随机模型项来考虑这些偏差需要完全指定概率动态和计算密集的估计方法。在这里,我们展示了一种替代方法——广义轮廓分析的实用性,该方法在不需要指定完整概率模型的情况下提供了对确定性模型违反的稳健性。我们为该框架引入了用于估计稳健性参数和进行统计推断的新方法。这些方法应用于安大略省疫苗接种前麻疹发病率模型,我们通过广泛的模拟证明了我们推断的统计有效性。结果证实,学期与暑假的差异驱动了传播的季节性,但我们没有发现短学期休息和估计的基本繁殖率(0)的影响,该值大大超过了先前的估计。该方法自然适用于任何具有可用候选微分方程的系统,并避免了许多限制状态空间模型蒙特卡罗推断的挑战。