Suppr超能文献

通过广义剖析对传染病动力学的状态空间模型进行参数化:安大略省的麻疹。

Parameterizing state-space models for infectious disease dynamics by generalized profiling: measles in Ontario.

机构信息

Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14850, USA.

出版信息

J R Soc Interface. 2011 Jul 6;8(60):961-74. doi: 10.1098/rsif.2010.0412. Epub 2010 Nov 17.

Abstract

Parameter estimation for infectious disease models is important for basic understanding (e.g. to identify major transmission pathways), for forecasting emerging epidemics, and for designing control measures. Differential equation models are often used, but statistical inference for differential equations suffers from numerical challenges and poor agreement between observational data and deterministic models. Accounting for these departures via stochastic model terms requires full specification of the probabilistic dynamics, and computationally demanding estimation methods. Here, we demonstrate the utility of an alternative approach, generalized profiling, which provides robustness to violations of a deterministic model without needing to specify a complete probabilistic model. We introduce novel means for estimating the robustness parameters and for statistical inference in this framework. The methods are applied to a model for pre-vaccination measles incidence in Ontario, and we demonstrate the statistical validity of our inference through extensive simulation. The results confirm that school term versus summer drives seasonality of transmission, but we find no effects of short school breaks and the estimated basic reproductive ratio (0) greatly exceeds previous estimates. The approach applies naturally to any system for which candidate differential equations are available, and avoids many challenges that have limited Monte Carlo inference for state-space models.

摘要

传染病模型的参数估计对于基本理解(例如,识别主要传播途径)、预测新出现的传染病以及设计控制措施非常重要。微分方程模型通常被使用,但是微分方程的统计推断受到数值挑战和观测数据与确定性模型之间的不良一致性的影响。通过随机模型项来考虑这些偏差需要完全指定概率动态和计算密集的估计方法。在这里,我们展示了一种替代方法——广义轮廓分析的实用性,该方法在不需要指定完整概率模型的情况下提供了对确定性模型违反的稳健性。我们为该框架引入了用于估计稳健性参数和进行统计推断的新方法。这些方法应用于安大略省疫苗接种前麻疹发病率模型,我们通过广泛的模拟证明了我们推断的统计有效性。结果证实,学期与暑假的差异驱动了传播的季节性,但我们没有发现短学期休息和估计的基本繁殖率(0)的影响,该值大大超过了先前的估计。该方法自然适用于任何具有可用候选微分方程的系统,并避免了许多限制状态空间模型蒙特卡罗推断的挑战。

相似文献

4
Seasonal transmission dynamics of measles in China.中国麻疹的季节性传播动态
Theory Biosci. 2018 Nov;137(2):185-195. doi: 10.1007/s12064-018-0271-8. Epub 2018 Sep 27.
8
Decreasing stochasticity through enhanced seasonality in measles epidemics.通过增强麻疹流行的季节性降低随机性。
J R Soc Interface. 2010 May 6;7(46):727-39. doi: 10.1098/rsif.2009.0317. Epub 2009 Oct 14.
9

引用本文的文献

1
Likelihood-based estimation and prediction for a measles outbreak in Samoa.基于似然性的萨摩亚麻疹疫情估计与预测。
Infect Dis Model. 2023 Feb 3;8(1):212-227. doi: 10.1016/j.idm.2023.01.007. eCollection 2023 Mar.
5
Patterns of smallpox mortality in London, England, over three centuries.三个世纪以来英国伦敦天花死亡率的变化模式。
PLoS Biol. 2020 Dec 21;18(12):e3000506. doi: 10.1371/journal.pbio.3000506. eCollection 2020 Dec.
6
Fast estimation of time-varying infectious disease transmission rates.快速估计时变传染病传播率。
PLoS Comput Biol. 2020 Sep 21;16(9):e1008124. doi: 10.1371/journal.pcbi.1008124. eCollection 2020 Sep.
7
Opportunities for improving cancer treatment using systems biology.利用系统生物学改善癌症治疗的机遇。
Curr Opin Syst Biol. 2019 Oct;17:41-50. doi: 10.1016/j.coisb.2019.10.018. Epub 2019 Nov 27.

本文引用的文献

4
Optimizing infectious disease interventions during an emerging epidemic.优化新发传染病疫情期间的传染病干预措施。
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):923-8. doi: 10.1073/pnas.0908491107. Epub 2009 Dec 28.
5
The transmissibility and control of pandemic influenza A (H1N1) virus.大流行性流感 A(H1N1)病毒的传播和控制。
Science. 2009 Oct 30;326(5953):729-33. doi: 10.1126/science.1177373. Epub 2009 Sep 10.
8
Optimizing influenza vaccine distribution.优化流感疫苗分配
Science. 2009 Sep 25;325(5948):1705-8. doi: 10.1126/science.1175570. Epub 2009 Aug 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验