Suppr超能文献

从根本不同的季节性驱动形式中预测流行病模式的不变性。

Invariant predictions of epidemic patterns from radically different forms of seasonal forcing.

机构信息

Center for Applied Mathematics, Cornell University, 657 Frank H.T. Rhodes Hall, Ithaca, NY 14853, USA.

Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.

出版信息

J R Soc Interface. 2019 Jul 26;16(156):20190202. doi: 10.1098/rsif.2019.0202. Epub 2019 Jul 31.

Abstract

Seasonal variation in environmental variables, and in rates of contact among individuals, are fundamental drivers of infectious disease dynamics. Unlike most periodically forced physical systems, for which the precise pattern of forcing is typically known, underlying patterns of seasonal variation in transmission rates can be estimated approximately at best, and only the period of forcing is accurately known. Yet solutions of epidemic models depend strongly on the forcing function, so dynamical predictions-such as changes in epidemic patterns that can be induced by demographic transitions or mass vaccination-are always subject to the objection that the underlying patterns of seasonality are poorly specified. Here, we demonstrate that the key bifurcations of the standard epidemic model are invariant to the shape of seasonal forcing if the amplitude of forcing is appropriately adjusted. Consequently, analyses applicable to real disease dynamics can be conducted with a smooth, idealized sinusoidal forcing function, and qualitative changes in epidemic patterns can be predicted without precise knowledge of the underlying forcing pattern. We find similar invariance in a seasonally forced predator-prey model, and conjecture that this phenomenon-and the associated robustness of predictions-might be a feature of many other periodically forced dynamical systems.

摘要

环境变量和个体之间接触率的季节性变化是传染病动力学的基本驱动因素。与大多数周期性受迫物理系统不同,对于这些系统,通常可以准确知道确切的强迫模式,而只能大致估计传输率季节性变化的潜在模式,并且只能准确知道强迫的周期。然而,传染病模型的解决方案强烈依赖于强迫函数,因此动态预测-例如人口转变或大规模疫苗接种可能引起的传染病模式的变化-始终存在一个反对意见,即季节性的潜在模式规定得很差。在这里,我们证明,如果适当调整强迫幅度,标准传染病模型的关键分岔对季节性强迫的形状是不变的。因此,可以使用平滑的理想化正弦强迫函数进行适用于实际疾病动态的分析,并且可以在没有潜在强迫模式的精确知识的情况下预测传染病模式的定性变化。我们在季节性强迫的捕食者-猎物模型中发现了类似的不变性,并推测这种现象-以及相关预测的稳健性-可能是许多其他周期性受迫动力系统的一个特征。

相似文献

4
Seasonal dynamics in an SIR epidemic system.SIR传染病系统中的季节性动态。
J Math Biol. 2014 Feb;68(3):701-25. doi: 10.1007/s00285-013-0645-y. Epub 2013 Feb 13.
5
Chaotic dynamics in the seasonally forced SIR epidemic model.季节性强迫SIR传染病模型中的混沌动力学
J Math Biol. 2017 Dec;75(6-7):1655-1668. doi: 10.1007/s00285-017-1130-9. Epub 2017 Apr 22.
6
Attack rates of seasonal epidemics.季节性流行病的发病率。
Math Biosci. 2012 Jan;235(1):56-65. doi: 10.1016/j.mbs.2011.10.007. Epub 2011 Nov 9.
8
Determinants of periodicity in seasonally driven epidemics.季节性驱动传染病的周期性决定因素。
J Theor Biol. 2012 Jul 21;305:88-95. doi: 10.1016/j.jtbi.2012.02.031. Epub 2012 Mar 23.

引用本文的文献

本文引用的文献

1
A century of transitions in New York City's measles dynamics.纽约市麻疹动态的百年变迁
J R Soc Interface. 2015 May 6;12(106). doi: 10.1098/rsif.2015.0024.
3
Patterns of spread of influenza A in Canada.加拿大甲型流感的传播模式。
Proc Biol Sci. 2013 Sep 11;280(1770):20131174. doi: 10.1098/rspb.2013.1174. Print 2013 Nov 7.
8
Absolute humidity modulates influenza survival, transmission, and seasonality.绝对湿度调节流感病毒的存活、传播及季节性。
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3243-8. doi: 10.1073/pnas.0806852106. Epub 2009 Feb 9.
9
Epidemiological effects of seasonal oscillations in birth rates.出生率季节性波动的流行病学影响。
Theor Popul Biol. 2007 Sep;72(2):274-91. doi: 10.1016/j.tpb.2007.04.004. Epub 2007 May 7.
10
Seasonal dynamics of recurrent epidemics.复发性流行病的季节性动态
Nature. 2007 Mar 29;446(7135):533-6. doi: 10.1038/nature05638.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验