Chiarulli D M, Levitan S P
Appl Opt. 1996 May 10;35(14):2449-56. doi: 10.1364/AO.35.002449.
We present an investigation of the architecture of an optoelectronic cache that can integrate terabit optical memories with the electronic caches associated with high-performance uniprocessors and multiprocessors. The use of optoelectronic-cache memories enables these terabit technologies to provide transparently low-latency secondary memory with frame sizes comparable with disk pages but with latencies that approach those of electronic secondary-cache memories. This enables the implementation of terabit memories with effective access times comparable with the cycle times of current microprocessors. The cache design is based on the use of a smart-pixel array and combines parallel free-space optical input-output to-and-from optical memory with conventional electronic communication to the processor caches. This cache and the optical memory system to which it will interface provide a large random-access memory space that has a lower overall latency than that of magnetic disks and disk arrays. In addition, as a consequence of the high-bandwidth parallel input-output capabilities of optical memories, fault service times for the optoelectronic cache are substantially less than those currently achievable with any rotational media.
我们展示了对一种光电缓存架构的研究,该架构能够将太比特级光学存储器与高性能单处理器和多处理器相关联的电子缓存集成在一起。使用光电缓存存储器能使这些太比特级技术透明地提供低延迟二级存储器,其帧大小与磁盘页面相当,但延迟接近电子二级缓存存储器的延迟。这使得能够实现有效访问时间与当前微处理器周期时间相当的太比特级存储器。该缓存设计基于智能像素阵列的使用,并将与光学存储器之间的并行自由空间光输入输出与到处理器缓存的传统电子通信相结合。此缓存及其将连接的光学存储系统提供了一个大型随机存取存储器空间,其总体延迟低于磁盘和磁盘阵列。此外,由于光学存储器具有高带宽并行输入输出能力,光电缓存的故障服务时间大大少于目前任何旋转介质所能达到的时间。