Department of Chemistry, University of California, Riverside, Riverside, California, USA.
PLoS Comput Biol. 2010 Nov 11;6(11):e1000994. doi: 10.1371/journal.pcbi.1000994.
The oligomerization/co-localization of protein complexes and their cooperative regulation in protein function is a key feature in many biological systems. The synergistic regulation in different subunits often enhances the functional properties of the multi-enzyme complex. The present study used molecular dynamics and Brownian dynamics simulations to study the effects of allostery, oligomerization and intermediate channeling on enhancing the protein function of tryptophan synthase (TRPS). TRPS uses a set of α/β-dimeric units to catalyze the last two steps of L-tryptophan biosynthesis, and the rate is remarkably slower in the isolated monomers. Our work shows that without their binding partner, the isolated monomers are stable and more rigid. The substrates can form fairly stable interactions with the protein in both forms when the protein reaches the final ligand-bound conformations. Our simulations also revealed that the α/β-dimeric unit stabilizes the substrate-protein conformation in the ligand binding process, which lowers the conformation transition barrier and helps the protein conformations shift from an open/inactive form to a closed/active form. Brownian dynamics simulations with a coarse-grained model illustrate how protein conformations affect substrate channeling. The results highlight the complex roles of protein oligomerization and the fine balance between rigidity and dynamics in protein function.
蛋白质复合物的寡聚化/共定位及其在蛋白质功能中的协同调节是许多生物系统的一个关键特征。不同亚基的协同调节通常会增强多酶复合物的功能特性。本研究使用分子动力学和布朗动力学模拟来研究变构、寡聚化和中间通道对增强色氨酸合酶(TRPS)蛋白质功能的影响。TRPS 使用一组 α/β-二聚体单元催化 L-色氨酸生物合成的最后两步,而在分离的单体中,其速率明显较慢。我们的工作表明,没有它们的结合伴侣,分离的单体是稳定的和更刚性的。当蛋白质达到最终配体结合构象时,底物可以在两种形式下与蛋白质形成相当稳定的相互作用。我们的模拟还表明,α/β-二聚体单元在配体结合过程中稳定了底物-蛋白质构象,降低了构象转变势垒,并帮助蛋白质构象从开放/非活性形式转变为闭合/活性形式。使用粗粒度模型的布朗动力学模拟说明了蛋白质构象如何影响底物通道。结果突出了蛋白质寡聚化的复杂作用以及蛋白质功能中刚性和动力学之间的精细平衡。